PDF (644.8 KB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Quantum Transport Properties of Chemically Functionalized Long Semiconducting Carbon Nanotubes

Alejandro Lopez-Bezanilla1Xavier Blase2Stephan Roche1,3()
Commissariat a l'Energie Atomique38054 Grenoble CedexFrance
Institut NéelCNRS and Université Joseph FourierB.P. 16638042Grenoble Cedex 09, France
CIN2 (CSIC-ICN) BarcelonaCampus UABE-08193 BellaterraSpain
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We present a first-principles study of the electronic transport properties of micrometer long semiconducting carbon nanotubes randomly covered with carbene functional groups. Whereas prior studies suggested that metallic tubes are hardly affected by such addends, we show here that the conductance of semiconducting tubes with standard diameter is, on the contrary, severely damaged. The configurational-averaged conductance as a function of tube diameter, with a coverage of up to one hundred molecules, is extracted. Our results indicate that the search for a conductance-preserving covalent functionalization route remains a challenging issue.

References

1

Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.

2

Guo, X. F.; Huang, L. M.; O'Brien, S.; Kim, P.; Nuckolls, K. Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. J. Am. Chem. Soc. 2007, 127, 15045–15047.

3

Simmons, J. M.; In, I.; Campbell, V. E.; Mark, T. J.; Léonard, F.; Gopalan, P.; Eriksson, M. A. Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes. Phys. Rev. Lett. 2007, 98, 086802.

4

Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535–2540.

5

Mannik, J.; Goldsmith, B. R.; Kane, A.; Collins, P. G. Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 2006, 97, 016601.

6

Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 2007, 315, 77–81.

7

Meunier, V.; Kalinin, S. V.; Sumpter, B. G. Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes. Phys. Rev. Lett. 2007, 98, 056401.

8

Derycke, V.; Auvray, S.; Borghetti, J.; Chung, C. L.; Lefèvre, R.; Lopez-Bezanilla, A.; Nguyen, K.; Robert, G.; Schmidt, G.; Anghel, C.; Chimot, N.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Chenevier, P.; Filoramo, A.; Goffman, M. F.; Goux-Capes, L.; Latil, S.; Blase, X.; Triozon, F.; Roche S.; Bourgoin, J. P. Carbon nanotube chemistry and assembly for electronic devices. C. R. Physique 2009, 10, 330–347.

9

Bahr, J. L.; Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 2001, 13, 3823–3824.

10

Cabana, J.; Martel, R. Probing the reversibility of sidewall functionalization using carbon nanotube transistors. J. Am. Chem. Soc. 2007, 129, 2244–2245.

11

Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, T.; Kern, T. Carbon nanotube transistors–chemical functionalization and device characterization. Phys. Status Solidi A 2008, 205, 633–646.

12

Le, Y. S.; Nardelli, M. B.; Marzari, N. Band structure and quantum conductance of nanostructures from maximally localized wannier functions: The case of functionalized carbon nanotubes Phys. Rev. Lett. 2005, 95, 076804.

13

Triozon, F.; Lambin, P.; Roche, S. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology 2005, 16, 230–233.

14

Lopez-Bezanilla, A.; Triozon, F.; Latil, S.; Blase, X.; Roche, S. Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale. Nano Lett. 2009, 9, 940–944.

15

Chen, Y.; Haddon, R. C.; Fang, S.; Rao, A. M.; Lee, W. H.; Dickey, E. C.; Grulke, E. A.; Pendergrass, J. C.; Chavan, A.; Haley, B. E.; Smalley, R. E. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J. Mater. Res. 1998, 13, 2423–2431.

16

Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes Science 1998, 282, 95–98.

17

Holzinger, M.; Vostrowsky, Q.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 2001, 40, 4002–4005.

18

Coleman, K. S.; Bailey, S. R.; Fogden, S.; Green, M. L. H. Functionalization of single-walled carbon nanotubes via the bingel reaction. J. Am. Chem. Soc. 2003, 125, 8722–8723.

19

Chen, Z. F.; Nagase, S.; Hirsch, A.; Haddon, R. C.; Thiel, W.; Schley, P. C. Side-wall opening of single-walled carbon nanotubes (SWCNTs) by chemical modification: A critical theoretical study. Angew. Chem. Int. Ed. 2004, 43, 1552–1554.

20

Lee, Y. S.; Marzari, N. Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 2006, 97, 116801.

21

Park, H.; Zhao, J. J.; Lu, J. P. Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes. Nano Lett. 2006, 6, 916–919.

22

Sánchez-Portal, D.; Ordejon, P.; Artacho, E.; Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quant. Chem. 1997, 65, 453–461.

23

Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

24

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

25

Lee, Y. S.; Marzari, N. Cycloadditions to control bond breaking in naphthalenes, fullerenes, and carbon nanotubes: A first-principles study. J. Phys. Chem. C 2008, 112, 4480–4485.

26

Kane, C. L.; Mele, E. L. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78, 1932.

27

Biel, B.; García-Vidal, F. J.; Rubio, A.; Flores, F. Ab initio study of transport properties in defected carbon nanotubes: An O(N) approach. J. Phys: Condes. Matter 2008, 20, 294214.

28

Adessi, Ch.; Roche, S.; Blase, X. Reduced backscattering in potassium-doped nanotubes: Ab initio and semiempirical simulations. Phys. Rev. B 2006, 73, 125414.

29

Triozon, F.; Roche, S. Efficient linear scaling method for computing the Landauer–Büttiker conductance. Eur. Phys. J. B 2005, 46, 427–431.

30

Triozon, F.; Lambin, P.; Roche, S. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology 2005, 16, 230–233.

31

Avriller, R.; Roche, S.; Triozon, F.; Blase, X. Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes. Mod. Phys. Lett. B 2007, 21, 1955–1982.

32

Rocha, A. R.; Rossil, M.; Fazzio, A.; da Silva, A. J. R. Designing real nanotube-based gas sensors. Phys. Rev. Lett. 2008, 100, 176803.

33

Markussen, T.; Rurali, R.; Brandbyge, M.; Jauho, A. P. Electronic transport through Si nanowires: Role of bulk and surface disorder. Phys. Rev. B 2006, 74, 245313.

34
The convergence to the clean system at the boundaries of a functionalized nanotube section can be checked through comparison of the conductance profiles obtained from its last layers (dotted lines in Fig. 2 and Fig. 3) with those of pristine nanotubes sections.
35

Margine, E. R.; Bocquet, M. L.; Blase, X. Thermal stability of graphene and nanotube covalent functionalization. Nano Lett. 2008, 8, 3315–3319.

36

Latil, S.; Roche, S.; Charlier, J. C. Electronic transport in carbon nanotubes with random coverage of physisorbed molecules. Nano Lett. 2005, 5, 2216–2219.

Nano Research
Pages 288-295
Cite this article:
Lopez-Bezanilla A, Blase X, Roche S. Quantum Transport Properties of Chemically Functionalized Long Semiconducting Carbon Nanotubes. Nano Research, 2010, 3(4): 288-295. https://doi.org/10.1007/s12274-010-1032-2
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return