Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This paper describes the synthesis of new upconverting luminescent nanoparticles that consist of YF3: Yb3+/Er3+ functionalized with poly(acrylic acid) (PAA). Unlike the upconverting nanocrystals previously reported in the literature that emit visible (blue–green–red) upconversion fluorescence, these as-prepared nanoparticles emit strong near-infrared (NIR, 831 nm) upconversion luminescence under 980 nm excitation. Scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction were used to characterize the size and composition of the luminescent nanocrystals. Their average diameter was about 50 nm. The presence of the PAA coating was confirmed by infrared spectroscopy. The particles are highly dispersible in aqueous solution due to the presence of carboxylate groups in the PAA coating. By carrying out the synthesis in the absence of PAA, YF3: Yb3+/Er3+ nanorice materials were obtained. These nanorice particles are larger (~700 nm in length) than the PAA-functionalized nanoparticles and show strong typical visible red (668 nm), rather than NIR (831 nm), upconversion fluorescence. The new PAA-coated luminescent nanoparticles have the pottential be used in a variety of bioanalytical and medical assays involving luminescence detection and fluorescence imaging, especially in vivo fluorescence imaging, due to the deep penetration of NIR radiation.
Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Edit. 2007, 46, 4342–4345.
Wang, L. Y.; Yang, Z. H.; Zhang, Y.; Wang, L. Bifunctional nanoparticles with magnetization and luminescence. J. Phys. Chem. C 2009, 113, 3955–3959.
Hill, H. D.; Hurst, S. J.; Mirkin, C. A. Curvature-induced base pair "slipping" effects in DNA-nanoparticle hybridization. Nano Lett. 2009, 9, 317–321.
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.
Viswanatha, R.; Battaglia, D. M.; Curtis, M. E.; Mishima, T. D.; Johnson, M. B.; Peng, X. Shape control of doped semiconductor nanocrystals (d-dots). Nano Res. 2008, 1, 138–144.
Sivakumar, S.; Diamente, P. R.; van Veggel, F. C. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem. -Eur. J. 2006, 12, 5878–5884.
Santra, S.; Yang, H.; Dutta, D.; Stanley, J. T.; Holloway, P. H.; Tan, W. H.; Moudgil, B. M.; Mericle, R. A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. 2004, 2810–2811.
Wang, L. Y.; Li, Y. D. Green upconversion nanocrystals for DNA detection. Chem. Commun. 2006, 2557–2559.
Yezhelyev, M. V.; Qi, L.; Regan, R. M. O.; Nie, S.; Gao, X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006–9012.
Mancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. Oxidative quenching and degradation of polymer-encapsulated quantum dots: New insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc. 2008, 130, 10836–10837.
King-Heiden, T. C.; Wiecinski, P. N.; Mangham, A. N.; Metz, K. M.; Nesbit, D.; Pedersen, J. A.; Hamers, R. J.; Heideman, W.; Peterson, R. E. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 2009, 43, 1605–1611.
Gouveia-Neto, A. S.; da Costa, E. B.; Bueno, L. A; Ribeiro, S. J. L. Intense red upconversion emission in infrared excited holmium-doped PbGeO3–PbF2–CdF2 transparent glass ceramic. J. Lumin. 2004, 110, 79–84.
Wang, L. Y.; Li, Y. D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649.
Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Yue, G.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.
Wang, L. Y.; Yan, R. X.; Hao, Z. Y.; Wang, L.; Zeng, J. H.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Edit. 2005, 44, 6054–6057.
van de Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A. K.; Niedbala, R. S.; Tanke, H. J. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 2001, 19, 273–276.
Yan, R. X.; Li, Y. D. Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv. Funct. Mater. 2005, 15, 763–770.
Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2104.
Gao, L.; Ge, X.; Chai, Z.; Xu, G.; Wang, X.; Wang, C. Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid. Nano Res. 2009, 2, 565–574.
Yu, X.; Li, M.; Xie, M.; Chen, L.; Li, Y.; Wang, Q. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.
Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.
Wang, L. Y.; Li, P.; Li, Y. D. Down- and up-conversion luminescent nanorods. Adv. Mater. 2007, 19, 3304–3307.
Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 : Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.
Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.
Wang, Y.; Tu, L.; Zhao, J.; Sun, Y.; Kong, X.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.
Schafer, H.; Ptacek, P.; Zerzouf, O.; Haase, M. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv. Funct. Mater. 2008, 18, 2913–2918.
Grogan, M. J.; Kaizuka, Y.; Conrad, R. M.; Groves, J. T.; Bertozzi, C. R. Synthesis of lipidated green fluorescent protein and its incorporation in supported lipid bilayers. J. Am. Chem. Soc. 2005, 127, 14383–14387.
Capobianco, J. A.; Vetrone, F.; Boyer, J. C.; Speghini, A.; Bettinelli, M. Enhancement of red emission (4F9/2–4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3 : Er3+. J. Phys. Chem. B 2002, 106, 1181–1187.
Suyver, J. F.; Aebischer, A.; Garcia-Revilla, S.; Gerner, P.; Gudel, H. U. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 2005, 71, 125123.
774
Views
25
Downloads
100
Crossref
N/A
Web of Science
111
Scopus
0
CSCD
Altmetrics
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.