AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effects of Gamma Irradiation for Sterilization on Aqueous Dispersions of Length Sorted Carbon Nanotubes

Jeffrey A. Fagan1( )Nancy J. Lin1Rolf Zeisler2Angela R. Hight Walker3
Polymers DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
Analytical Chemistry DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
Optical Technology DivisionNational Institute of Standards and TechnologyGaithersburgMD20899USA
Show Author Information

Graphical Abstract

Abstract

There is currently great interest in the potential use of carbon nanotubes as delivery vessels for nanotherapeutics and other medical applications. However, no data are available on the effects of sterilization methods on the properties of nanotube dispersions, the form in which most medical applications will be processed. Here we show the effects of gamma irradiation from a 60Co source on the dispersion and optical properties of single-wall carbon nanotubes in aqueous dispersion. Samples of different length-refined populations were sealed in ampoules and exposed to a dose of approximately 28 kGy, a level sufficient to ensure sterility of the dispersions. In contrast to literature results for solid-phase nanotube samples, the effects of gamma irradiation on the dispersion and optical properties of the nanotube samples were found to be minimal. Based on these results, gamma irradiation appears sufficiently non-destructive to be industrially useful for the sterilization of nanotube dispersions.

Electronic Supplementary Material

Download File(s)
nr-4-4-393_ESM.pdf (1.2 MB)

References

1

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273-1276.

2

Kymakis, E.; Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 2002, 80, 112-114.

3

Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600-11605.

4

Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006, 58, 1460-1470.

5

Xiao, Y.; Gao, X.; Taratula, O.; Treado, S.; Urbas, A.; Holbrook, R. D.; Cavicchi, R. E.; Avedisian, C. T.; Mitra, S.; Savla, R.; Wagner, P. D.; Srivastava, S.; He, H. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 2009, 9, 351.

6

Besteman, K.; Lee, J. O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003, 3, 727-730.

7

Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86-92.

8

Ananta, J. S.; Matson, M. L.; Tang, A. M.; Mandal, T.; Lin, S.; Wong, K.; Wong, S. T.; Wilson, L. J. Single-walled carbon nanotube materials as T2-weighted MRI contrast agents. J. Phys. Chem. C 2009, 113, 19369-19372.

9

Hong, S. Y.; Tobias, G.; Al-Jamal, K. T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P. D.; Sim, R. B.; Finucane, C.; Mather, S. J.; Green, M. L. H.; Kostarelos, K.; Gavis, G. B. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485-490.

10

Belluci, S.; Chiaretti, M.; Onorato, P.; Rossella, F.; Grandi, M. S.; Galinetto, P.; Sacco, I.; Micciulla, F. Micro-Raman study of the role of sterilization on carbon nanotubes for biomedical applications. Nanomedicine 2010, 5, 209-215.

11

Skakalova, V.; Hulman, M.; Fedorko, P.; Lukáĉ, P.; Roth, S. Effect of gamma-irradiation on single-wall carbon nanotube paper. AIP Conf. Proc. 2003, 685, 143-147.

12

Skakalova, V.; Dettlaff-Weglikowska, U.; Roth, S. Gamma-irradiated and functionalized single wall nanotubes. Diamond Relat. Mater. 2004, 13, 296-298.

13

Aitkaliyeva, A.; McCarthy, M. C.; Martin, M.; Fu, E. G.; Wijesundera, D.; Wang, X.; Chu, W.; Jeong, H.; Shao, L. Defect formation and annealing kinetics in ion irradiated carbon nanotube buckypapers. Nucl. Instrum. Meth. Phys. Res. B 2009, 267, 3443-3446.

14

Cress, C. D.; Schauerman, C. M.; Landi, B. J.; Messenger, S. R.; Raffaelle, R. P.; Walters, R. J. Radiation effects in single-walled carbon nanotube papers. J. Appl. Phys. 2010, 107, 014316.

15

Tang, X. W.; Yang, Y.; Kim, W.; Wang, Q.; Qi, P.; Dai, H.; Xing, L. Measurement of ionizing radiation using carbon nanotube field effect transistor. Phys. Med. Biol. 2005, 50, N23.

16

Vitusevich, S. A.; Sydoruk, V. A.; Petrychuk, M. V.; Danilchenko, B. A.; Klein, N.; Offenhäusser, A.; Ural, A.; Bosman, G. Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment. J. Appl. Phys. 2010, 107, 063701.

17

Memisoglu-Bilensoy, E.; Hincal, A. A. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Intl. J. Pharm. 2006, 311, 203-208.

18

Maksimenko, O. O.; Pavlov, E. P.; Tushov, É. G.; Molin, A. A.; Stukalov, Y. U.; Prudskova, T. N.; Sveshnikov, P. G.; Kreuter, J.; Gel'perina, S. É. Radiation sterilization of medicinal formulations of doxorubicin bound to poly(butylcyanoacrylate) nanoparticles. Pharm. Chem. J. 2008, 42, 363-367.

19

Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509-3515.

20

Krasheninnikov, A. V.; Banhart, F.; Li, J. X.; Foster, A. S.; Nieminen, R. M. Stability of carbon nanotubes under electron irradiation: Role of tube diameter and chirality. Phys. Rev. B 2005, 72, 125428.

21

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Sansibudzem, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence dependent DNA assembly. Science 2003, 302, 1545-1548.

22

Fagan, J. A.; Simpson, J. R.; Bauer, B. J.; Lacerda, S. H. D.; Becker, M. L.; Chun, J.; Migler, K. B.; Hight Walker, A. R.; Hobbie, E. K. Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 10607-10612.

23

Liu, J.; Hersam, M. C. Recent developments in carbon nanotube sorting and selective growth. MRS Bull. 2010, 35, 315-321.

24

Green, A. A.; Duch, M. C.; Hersam, M. C. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res. 2009, 2, 69-77.

25

Franç, A.; Pelaz, B.; Moros, M.; Sánchez-Espinel, C.; Hernández, A.; Fernández-López, C.; Grazú, V.; de la Fuente, J. M.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; González-Fernández, A. Sterilization matters: Consequences of different sterilization techniques on gold nanoparticles. Small 2010, 6, 89-95.

26

Bozdag, S.; Dillen, K.; Vandervoort, J.; Ludwig, A. The effect of freeze-drying with different cryoprotectants and Gamma-irradiation sterilization on the characteristics of cipro-floxacin HCI-Ioaded poly(D, L-Iactide-glycolide) nanoparticles. J. Pharm. Pharmacol. 2005, 57, 699-707.

27

Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025-1058.

28

Schmelling, D. C.; Poster, D. L.; Chaychian, M.; Neta, P.; Silverman, J.; Al-Sheikhly, M. Degradation of polychlorinated biphenyls induced by ionizing radiation in aqueous micellar solutions. Environ. Sci. Technol. 1998, 32, 270-275.

29

Becker, M. L.; Fagan, J. A.; Gallant, N. D.; Bauer, B. J.; Bajpai, V.; Hobbie, E. K.; Lacerda, S. H.; Migler, K. B.; Jakupciak, J. P. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 2007, 19, 939-945.

30

Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. D.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004, 4, 1881-1887.

31

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361-2366.

32

Zeisler, R.; Paul, R. L.; Oflaz Spatz, R.; Yu, L. L.; Mann, J. L.; Kelly, W. R.; Lang, B. E.; Leigh, S. D.; Fagan, J. Elemental analysis of a single-wall carbon nanotube candidate reference material. Anal. Bioanal. Chem. 2010, DOI: 10.1007/s00216-010-4275-6.

33

Wenseleers, W.; Vlasov, I. I.; Goovaerts, E.; Obraztsova, E.; Lobach, A. S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 2004, 14, 1105-1112.

34

Haggenmueller, R.; Rahatekar, S. S.; Fagan, J. A.; Chun, J.; Becker, M. L.; Naik, R. R.; Krauss, T.; Carlson, L.; Kadla, J. F.; Trulove, P. C.; Fox, D. F.; DeLong, H. C.; Fan, Z.; Kelley, S. O.; Gilman, J. W. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 2008, 24, 5070-5078.

35

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.

36

Simpson, J. R.; Fagan, J. A.; Becker, M. L.; Hobbie, E. K.; Hight Walker, A. R. The effect of dispersant on defects in length-separated single-wall carbon nanotubes measured by Raman spectroscopy. Carbon 2009, 47, 3238-3241.

37

Tsyboulski, D. A.; Bakota, E. L.; Witus, L. S.; Rocha, J. D. R.; Hartgerink, J. D.; Weisman, R. B. Self-assembling peptide coatings designed for highly luminescent suspension of single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 17134-17140.

38

McDonald, T. J.; Engtrakul, C.; Jones, M.; Rumbles, G.; Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 2006, 110, 25339-25346.

39

Zhao, J.; Park, H.; Han, J.; Lu, J. P. Electronic properties of carbon nanotubes with covalent sidewall functionalization. J. Phys. Chem. B 2004, 108, 4227-4230.

40

Lee, J.; Song, W.; Jang, S. S.; Fortner, J. D.; Alvarez, P. J. J.; Cooper, W. J.; Kim, J. Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ. Sci. Technol. 2010, 44, 3786-3792.

41

Boess, C.; Bögl, K. W. Influence of radiation treatment on pharmaceuticals—a review; akaloids, morphine derivatives, and antibiotics. Drug Dev. Pharm. 1996, 22, 495-529.

42

Siitonen, A. J.; Tsyboulski, D. A.; Bachilo, S. M.; Weisman, R. B. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Lett. 2010, 10, 1595-1599.

43

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer-Verlag: Heidelberg, 2001.

44

Suzuki, S.; Kobayashi, Y. Diameter dependence of low-energy electron and photon irradiation damage in single-walled carbon nanotubes. Chem. Phys. Lett. 2006, 430, 370-374.

45
Spinks, J. W. T.; Woods, R. J. An introduction to Radiation Chemistry; Ch. 7; Wiley Interscience: New York, NY, 1990.
46
Certain equipment, instruments or materials are identified in this paper in order to adequately specify the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology nor does it imply the materials are necessarily the best available for the purpose.
47

Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609-1613.

48

Fagan, J. A.; Becker, M. L.; Chun, J.; Nie, P.; Bauer, B. J.; Simpson, J. R.; Walker, A. R. H.; Hobbie, E. K. Centrifugal length separation of carbon nanotubes. Langmuir 2008, 24, 13880-13889.

49

Zeisler, R.; Lindstrom, R. M.; Greenberg, R. R. Instrumental neutron activation analysis: A valuable link in chemical metrology. J. Radioanal. Nucl. Chem. 2005, 263, 315-319.

50

Sambrook, J.; Russel, D. W. Molecular Cloning: A Laboratory Manual. 3rd edition; Cold Spring Harbor Laboratory Press: Woodbury NY, 2001.

51

Fantini, C.; Jorio, A.; Santos, A. P.; Peressinotto, V. S. T.; Pimenta, M. A. Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 2007, 439, 138-142.

Nano Research
Pages 393-404
Cite this article:
Fagan JA, Lin NJ, Zeisler R, et al. Effects of Gamma Irradiation for Sterilization on Aqueous Dispersions of Length Sorted Carbon Nanotubes. Nano Research, 2011, 4(4): 393-404. https://doi.org/10.1007/s12274-011-0094-0

763

Views

12

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 08 December 2010
Revised: 16 December 2010
Accepted: 17 December 2010
Published: 11 January 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return