Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Composite Bi@Bi2O3 microspheres have been synthesized via a microwave-assisted solvothermal route. The Bi@Bi2O3 microspheres had a narrow size distribution in the range 1.2-2.8 mm. Glucose was selected as the reductant, BiCl3 as the bismuth source, and ethylene glycol (EG) as the solvent in the synthesis system. The as-synthesized sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle diameter distribution, energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activities of the Bi@Bi2O3 microspheres were evaluated by the photodegradation of rhodamine B (RhB) and methyl orange (MO) dyes under UV light irradiation. The degradation reached ~96.6% for RhB and 100% for MO after 4 h reaction in the presence of the as-synthesized Bi@Bi2O3 microspheres.
Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693-713.
Schärtl, W. Crosslinked spherical nanoparticles with core-shell topology. Adv. Mater. 2000, 12, 1899-1908.
Garcia, N.; Kao, Y. H.; Strongin, M. Galvanomagnetic studies of bismuth films in quantum-size-effect region. Phys. Rev. B 1972, 5, 2029-2039.
Heremans, J.; Hansen, O. P. Influence of non-parabolicity on intravalley electron-phonon scattering; the case of bismuth. J. Phys. C: Solid State Phys. 1979, 12, 3483-3497.
Boukai, A.; Xu, K.; Heath, J. R. Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 2006, 18, 864-869.
Cornelius, T. W.; Toimil-Molares, M. E.; Neumann, R.; Fahsold, G.; Lovrincic, R.; Pucci, A.; Karim, S. Quantum size effects manifest in infrared spectra of single bismuth nanowires. Appl. Phys. Lett. 2006, 88, 103114.
Chiu, P. H. P.; Shih, I. H. Nonlinear current-voltage characteristics of bismuth nanodot structures. Appl. Phys. Lett. 2006, 88, 072110.
Li, L.; Yang, W. Y.; Huang, X. H.; Li, G. H.; Ang, R.; Zhang, L. D. Fabrication and electronic transport properties of Bi nanotube arrays. Appl. Phys. Lett. 2006, 88, 103119.
Liu, H.; Wang, Z. L. Bismuth spheres grown in self-nested cavities in a silicon wafer. J. Am. Chem. Soc. 2005, 127, 15322-15326.
Leontie, L.; Caraman, M.; Delibas, M.; Rusu, G. I. Optical properties of bismuth trioxide thin films. Mater. Res. Bull. 2001, 36, 1629-1637.
Leontie, L.; Caraman, M.; Alexe, M.; Harnagea, C. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480-485.
Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 2006, 99, 174-180.
Hameed, A.; Montini, T.; Gombac, V.; Fornasiero, P. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 2008, 130, 9658-9659.
Zhou, L.; Wang, W. Z.; Xu, H. L.; Sun, S. M.; Shang, M. Bi2O3 hierarchical nanostructures: Controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J. 2009, 15, 1776-1782.
Li, H. Y.; Wang, D. J.; Wang, P.; Fan, H. M.; Xie, T. F. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem. Eur. J. 2009, 15, 12521-12527.
Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 2007, 111, 18288-18293.
Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shi, J. L. Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue. Scripta Mater. 2007, 56, 189-192.
Hameed, A.; Gombac, V.; Montini, T.; Felisari, L.; Fornasiero, P. Photocatalytic activity of zinc modified Bi2O3. Chem. Phys. Lett. 2009, 483, 254-261.
Liu, Y.; Xin, F.; Wang, F.; Luo, S.; Yin, X. Synthesis, characterization, and activities of visible light-driven Bi2O3-TiO2. J. Alloy. Compd. 2010, 498, 179-184.
Bian, Z.; Huo, Y.; Zhang, Y.; Zhu, J.; Lu, Y.; Li, H. Aerosol-spay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity. Appl. Catal. B. 2009, 91, 247-253.
Wu, Y.; Lu, G.; Li, S. The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J. Phys. Chem. C 2009, 113, 9950-9955.
Wang, Y.; Wen, Y.; Ding, H.; Shan, Y. Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic process. J. Mater. Sci. 2010, 45, 1385-1392.
Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. Study of highly visible light active Bi2O3 loaded ordered mesoporous titania. Appl. Catal. B. 2010, 94, 272-280.
Li, L.; Yan, B. CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity. J. Non-Cryst. Solids 2009, 355, 776-779.
Bian, Z.; Ren, J.; Zhu, J.; Wang, S.; Lu, Y.; Li, H. Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity. Appl. Catal. B 2009, 89, 577-582.
Drache, M.; Roussel, P.; Wignacourt, J. P. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chem. Rev. 2007, 107, 80-96.
Shuk, P.; Wiemhofer, H. D.; Guth, U.; Gopel, W.; Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179-196.
Landry, C. C.; Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation. Science 1993, 260, 1653-1655.
Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791-15800.
Gupta, M.; Leong, W. W. Microwaves and Metals; John Wiley & Sons (Asia) Pte. Ltd. : Singapore, 2007.
Zhu, J. F.; Zhu, Y. J. Microwave-assisted one-step synthesis of polyacrylamide-Metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 2006, 110, 8593-8597.
Jacob, D. S.; Genish, I.; Klein, L.; Gedanken, A. Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid. J. Phys. Chem. B 2006, 110, 17711-17714.
Li, D. S.; Komarneni, S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc. 2006, 89, 1510-1517.
Park, S.; Kang, K. H.; Han, W. Q.; Vogt, T. Synthesis and characterization of Bi nanorods and superconducting NiBi particles. J. Alloy. Compd. 2005, 400, 88-91.
Gao, Y. H.; Niu, H. L.; Zeng, C.; Chen, Q. W. Preparation and characterization, of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem. Phys. Lett. 2003, 367, 141-144.
Cao, H.; Wang, G.; Zhang, L.; Liang, Y.; Zhang, S.; Zhang, X. Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 2006, 7, 1897-1901.
Cao, H.; Wang, G.; Zhang, S.; Zhang, X.; Rabinovich, D. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem. 2006, 45, 5103-5108.
Wu, Q.; Cao, H.; Zhang, S.; Zhang, X.; Rabinovich, D. Generation and optical properties of monodisperse wurtzite-type ZnS microspheres. Inorg. Chem. 2006, 45, 7316-7322.
Wang, J.; Wang, X.; Peng, Q.; Li, Y. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552-7556.
Mitch, M. G.; Chase, S. J.; Fortner, J.; Yu, R. Q.; Lannin, J. S. Phase-transition in ultrathin Bi films. Phys. Rev. Lett. 1991, 67, 875-878.
Lannin, J. S. Finite size effects on the dynamics of amorphous and nanocrystalline materials. J. Non-Cryst. Solids. 1992, 141, 233-240.
Lannin, J. S.; Calleja, J. M.; Cardona, M. 2nd-order Raman-scattering in group-VB semimetals-Bi, Sb, and As. Phys. Rev. B 1975, 12, 585-593.
Onari, S.; Miura, M.; Matsuishi, K. Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique. Appl. Surf. Sci. 2002, 197/198, 615-618.
Huang, H. Z. Nanomaterials Analysis; Chemical Industry Press: Beijing, 2003.
Chastain, J. Handbook of X-ray Photoelectron Spectroscopy; PerkinElmer Corporation: Minnesota, 1992.
Hüfner, S. Photoelectron Spectroscopy, 2nd ed.; Springer-Verlag: New York, 1996.
Dharmadhikari, V. S.; Sainkar, S. R.; Badrinarayan, S.; Goswami, A. Characterization of thin-films of bismuth oxide by X-ray photo-electron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 181-189.
Morgan, W. E.; Stec, W. J.; Van Vazer, J. R. Inner-orbital binding-energy shift of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953-955.
Ding, P.; Du, Y. G.; Xu, Z. L. Effect of preparation methods of Bi2O3 nanoparticles on their photocatalytic activity. Chem. Res. Chinese. U. 2004, 20, 717-721.
Qu, L.; Shi, G.; Wu, X.; Fan, B. Facile route to silver nanotubes. Adv. Mater. 2004, 16, 1200-1203.
Chen, S.; Liu, Y.; Shao, C.; Mu, R.; Lu, Y.; Zhang, J.; Shen, D.; Fan, X. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 2005, 17, 586-590.
Thostenson, E. T.; Chou, T. W. Microwave processing: Fundamentals and applications. Composites A 1999, 30, 1055-1071.
Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Synthesis of inorganic solids using microwaves. Chem. Mater. 2002, 11, 882-895.
Li, C.; O'Halloran, K. P.; Ma, H.; Shi, S. Multifunctional multilayer films containing polyxometalates and bismuth oxide nanoparticles. J. Phys. Chem. B 2009, 113, 8043-8048.
Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J. Colloid Interf. Sci. 2009, 333, 242-248.
Yang, B. J.; Mo, M. S.; Hu, H. M.; Li, C.; Yang, X. G.; Li, Q. W.; Qian, Y. T. A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem. 2004, 1785-1787.
Dong, W. T.; Zhu, C. S. Preparation and optical properties of UV dye DMT-doped silica films. J. Phys. Chem. Solids 2003, 64, 265-271.
Soitah, T. N.; Yang, C.; Yu, Y.; Niu, Y.; Sun, L. Properties of Bi2O3 thin films prepared via a modified Pechini route. Curr. Appl. Phys. 2010, 10, 13720-1377.
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Enviromental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
Kanofsky, J. R. Singlet oxygen production by biological-systems. Chem. Biol. Interact. 1989, 70, 1-28.
Liu, G. M.; Li, X. Z.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982-3990.
Kosanić, M. M.; Tričković, J. S. Degradation of pararo-saniline dye photoassisted by visible light. J. Photochem. Photobiol. A 2002, 149, 247-251.
Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conduction on activity. J. Phys. Chem. B 2003, 107, 7965-7969.