AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Generation and Photocatalytic Activities of Bi@Bi2O3 Microspheres

Xiangwen LiuHuaqiang Cao( )Jiefu Yin
Department of ChemistryTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Composite Bi@Bi2O3 microspheres have been synthesized via a microwave-assisted solvothermal route. The Bi@Bi2O3 microspheres had a narrow size distribution in the range 1.2-2.8 mm. Glucose was selected as the reductant, BiCl3 as the bismuth source, and ethylene glycol (EG) as the solvent in the synthesis system. The as-synthesized sample was characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), particle diameter distribution, energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activities of the Bi@Bi2O3 microspheres were evaluated by the photodegradation of rhodamine B (RhB) and methyl orange (MO) dyes under UV light irradiation. The degradation reached ~96.6% for RhB and 100% for MO after 4 h reaction in the presence of the as-synthesized Bi@Bi2O3 microspheres.

Electronic Supplementary Material

Download File(s)
nr-4-5-470_ESM.pdf (529.3 KB)

References

1

Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693-713.

2

Schärtl, W. Crosslinked spherical nanoparticles with core-shell topology. Adv. Mater. 2000, 12, 1899-1908.

3

Garcia, N.; Kao, Y. H.; Strongin, M. Galvanomagnetic studies of bismuth films in quantum-size-effect region. Phys. Rev. B 1972, 5, 2029-2039.

4

Heremans, J.; Hansen, O. P. Influence of non-parabolicity on intravalley electron-phonon scattering; the case of bismuth. J. Phys. C: Solid State Phys. 1979, 12, 3483-3497.

5

Boukai, A.; Xu, K.; Heath, J. R. Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Adv. Mater. 2006, 18, 864-869.

6

Cornelius, T. W.; Toimil-Molares, M. E.; Neumann, R.; Fahsold, G.; Lovrincic, R.; Pucci, A.; Karim, S. Quantum size effects manifest in infrared spectra of single bismuth nanowires. Appl. Phys. Lett. 2006, 88, 103114.

7

Chiu, P. H. P.; Shih, I. H. Nonlinear current-voltage characteristics of bismuth nanodot structures. Appl. Phys. Lett. 2006, 88, 072110.

8

Li, L.; Yang, W. Y.; Huang, X. H.; Li, G. H.; Ang, R.; Zhang, L. D. Fabrication and electronic transport properties of Bi nanotube arrays. Appl. Phys. Lett. 2006, 88, 103119.

9

Liu, H.; Wang, Z. L. Bismuth spheres grown in self-nested cavities in a silicon wafer. J. Am. Chem. Soc. 2005, 127, 15322-15326.

10

Leontie, L.; Caraman, M.; Delibas, M.; Rusu, G. I. Optical properties of bismuth trioxide thin films. Mater. Res. Bull. 2001, 36, 1629-1637.

11

Leontie, L.; Caraman, M.; Alexe, M.; Harnagea, C. Structural and optical characteristics of bismuth oxide thin films. Surf. Sci. 2002, 507, 480-485.

12

Li, W. Facile synthesis of monodisperse Bi2O3 nanoparticles. Mater. Chem. Phys. 2006, 99, 174-180.

13

Hameed, A.; Montini, T.; Gombac, V.; Fornasiero, P. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 2008, 130, 9658-9659.

14

Zhou, L.; Wang, W. Z.; Xu, H. L.; Sun, S. M.; Shang, M. Bi2O3 hierarchical nanostructures: Controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J. 2009, 15, 1776-1782.

15

Li, H. Y.; Wang, D. J.; Wang, P.; Fan, H. M.; Xie, T. F. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem. Eur. J. 2009, 15, 12521-12527.

16

Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 2007, 111, 18288-18293.

17

Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shi, J. L. Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue. Scripta Mater. 2007, 56, 189-192.

18

Hameed, A.; Gombac, V.; Montini, T.; Felisari, L.; Fornasiero, P. Photocatalytic activity of zinc modified Bi2O3. Chem. Phys. Lett. 2009, 483, 254-261.

19

Liu, Y.; Xin, F.; Wang, F.; Luo, S.; Yin, X. Synthesis, characterization, and activities of visible light-driven Bi2O3-TiO2. J. Alloy. Compd. 2010, 498, 179-184.

20

Bian, Z.; Huo, Y.; Zhang, Y.; Zhu, J.; Lu, Y.; Li, H. Aerosol-spay assisted assembly of Bi2Ti2O7 crystals in uniform porous microspheres with enhanced photocatalytic activity. Appl. Catal. B. 2009, 91, 247-253.

21

Wu, Y.; Lu, G.; Li, S. The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J. Phys. Chem. C 2009, 113, 9950-9955.

22

Wang, Y.; Wen, Y.; Ding, H.; Shan, Y. Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic process. J. Mater. Sci. 2010, 45, 1385-1392.

23

Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. Study of highly visible light active Bi2O3 loaded ordered mesoporous titania. Appl. Catal. B. 2010, 94, 272-280.

24

Li, L.; Yan, B. CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity. J. Non-Cryst. Solids 2009, 355, 776-779.

25

Bian, Z.; Ren, J.; Zhu, J.; Wang, S.; Lu, Y.; Li, H. Self-assembly of BixTi1-xO2 visible photocatalyst with core-shell structure and enhanced activity. Appl. Catal. B 2009, 89, 577-582.

26

Drache, M.; Roussel, P.; Wignacourt, J. P. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chem. Rev. 2007, 107, 80-96.

27

Shuk, P.; Wiemhofer, H. D.; Guth, U.; Gopel, W.; Greenblatt, M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 1996, 89, 179-196.

28

Landry, C. C.; Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation. Science 1993, 260, 1653-1655.

29

Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwave-enhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791-15800.

30

Gupta, M.; Leong, W. W. Microwaves and Metals; John Wiley & Sons (Asia) Pte. Ltd. : Singapore, 2007.

31

Zhu, J. F.; Zhu, Y. J. Microwave-assisted one-step synthesis of polyacrylamide-Metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 2006, 110, 8593-8597.

32

Jacob, D. S.; Genish, I.; Klein, L.; Gedanken, A. Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid. J. Phys. Chem. B 2006, 110, 17711-17714.

33

Li, D. S.; Komarneni, S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc. 2006, 89, 1510-1517.

34

Park, S.; Kang, K. H.; Han, W. Q.; Vogt, T. Synthesis and characterization of Bi nanorods and superconducting NiBi particles. J. Alloy. Compd. 2005, 400, 88-91.

35

Gao, Y. H.; Niu, H. L.; Zeng, C.; Chen, Q. W. Preparation and characterization, of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chem. Phys. Lett. 2003, 367, 141-144.

36

Cao, H.; Wang, G.; Zhang, L.; Liang, Y.; Zhang, S.; Zhang, X. Shape and magnetic properties of single-crystalline hematite (α-Fe2O3) nanocrystals. ChemPhysChem 2006, 7, 1897-1901.

37

Cao, H.; Wang, G.; Zhang, S.; Zhang, X.; Rabinovich, D. Growth and optical properties of wurtzite-type CdS nanocrystals. Inorg. Chem. 2006, 45, 5103-5108.

38

Wu, Q.; Cao, H.; Zhang, S.; Zhang, X.; Rabinovich, D. Generation and optical properties of monodisperse wurtzite-type ZnS microspheres. Inorg. Chem. 2006, 45, 7316-7322.

39

Wang, J.; Wang, X.; Peng, Q.; Li, Y. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552-7556.

40

Mitch, M. G.; Chase, S. J.; Fortner, J.; Yu, R. Q.; Lannin, J. S. Phase-transition in ultrathin Bi films. Phys. Rev. Lett. 1991, 67, 875-878.

41

Lannin, J. S. Finite size effects on the dynamics of amorphous and nanocrystalline materials. J. Non-Cryst. Solids. 1992, 141, 233-240.

42

Lannin, J. S.; Calleja, J. M.; Cardona, M. 2nd-order Raman-scattering in group-VB semimetals-Bi, Sb, and As. Phys. Rev. B 1975, 12, 585-593.

43

Onari, S.; Miura, M.; Matsuishi, K. Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique. Appl. Surf. Sci. 2002, 197/198, 615-618.

44

Huang, H. Z. Nanomaterials Analysis; Chemical Industry Press: Beijing, 2003.

45

Chastain, J. Handbook of X-ray Photoelectron Spectroscopy; PerkinElmer Corporation: Minnesota, 1992.

46

Hüfner, S. Photoelectron Spectroscopy, 2nd ed.; Springer-Verlag: New York, 1996.

47

Dharmadhikari, V. S.; Sainkar, S. R.; Badrinarayan, S.; Goswami, A. Characterization of thin-films of bismuth oxide by X-ray photo-electron spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 181-189.

48

Morgan, W. E.; Stec, W. J.; Van Vazer, J. R. Inner-orbital binding-energy shift of antimony and bismuth compounds. Inorg. Chem. 1973, 12, 953-955.

49

Ding, P.; Du, Y. G.; Xu, Z. L. Effect of preparation methods of Bi2O3 nanoparticles on their photocatalytic activity. Chem. Res. Chinese. U. 2004, 20, 717-721.

50

Qu, L.; Shi, G.; Wu, X.; Fan, B. Facile route to silver nanotubes. Adv. Mater. 2004, 16, 1200-1203.

51

Chen, S.; Liu, Y.; Shao, C.; Mu, R.; Lu, Y.; Zhang, J.; Shen, D.; Fan, X. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 2005, 17, 586-590.

52

Thostenson, E. T.; Chou, T. W. Microwave processing: Fundamentals and applications. Composites A 1999, 30, 1055-1071.

53

Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. Synthesis of inorganic solids using microwaves. Chem. Mater. 2002, 11, 882-895.

54

Li, C.; O'Halloran, K. P.; Ma, H.; Shi, S. Multifunctional multilayer films containing polyxometalates and bismuth oxide nanoparticles. J. Phys. Chem. B 2009, 113, 8043-8048.

55

Wang, C.; Shao, C.; Wang, L.; Zhang, L.; Li, X.; Liu, Y. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J. Colloid Interf. Sci. 2009, 333, 242-248.

56

Yang, B. J.; Mo, M. S.; Hu, H. M.; Li, C.; Yang, X. G.; Li, Q. W.; Qian, Y. T. A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem. 2004, 1785-1787.

57

Dong, W. T.; Zhu, C. S. Preparation and optical properties of UV dye DMT-doped silica films. J. Phys. Chem. Solids 2003, 64, 265-271.

58

Soitah, T. N.; Yang, C.; Yu, Y.; Niu, Y.; Sun, L. Properties of Bi2O3 thin films prepared via a modified Pechini route. Curr. Appl. Phys. 2010, 10, 13720-1377.

59

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Enviromental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

60

Kanofsky, J. R. Singlet oxygen production by biological-systems. Chem. Biol. Interact. 1989, 70, 1-28.

61

Liu, G. M.; Li, X. Z.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 2000, 34, 3982-3990.

62

Kosanić, M. M.; Tričković, J. S. Degradation of pararo-saniline dye photoassisted by visible light. J. Photochem. Photobiol. A 2002, 149, 247-251.

63

Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conduction on activity. J. Phys. Chem. B 2003, 107, 7965-7969.

Nano Research
Pages 470-482
Cite this article:
Liu X, Cao H, Yin J. Generation and Photocatalytic Activities of Bi@Bi2O3 Microspheres. Nano Research, 2011, 4(5): 470-482. https://doi.org/10.1007/s12274-011-0103-3

785

Views

207

Crossref

N/A

Web of Science

216

Scopus

8

CSCD

Altmetrics

Received: 04 August 2010
Revised: 26 December 2010
Accepted: 28 December 2010
Published: 10 February 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return