AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors

Lu HuangYi Huang( )Jiajie LiangXiangjian WanYongsheng Chen( )
Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science & TechnologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
Show Author Information

Graphical Abstract

Abstract

A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet printing technique. The graphene-based patterns printed on plastic substrates demonstrated a high electrical conductivity after thermal reduction, and more importantly, they retained the same conductivity over severe bending cycles. Accordingly, flexible electric circuits and a hydrogen peroxide chemical sensor were fabricated and showed excellent performances, demonstrating the applications of this simple and practical. The results show that graphene materials—which can be easily produced on a large scale and possess outstanding electronic properties—have great potential for the convenient fabrication of flexible and low-cost graphene-based electronic devices, by using a simple inkjet printing technique.

Electronic Supplementary Material

Download File(s)
nr-4-7-675_ESM.pdf (533.9 KB)

References

1

Sele, C. W.; von Werne, T.; Friend, R. H.; Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 2005, 17, 997–1001.

2

De Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

3

Nur, H. M.; Song, J. H.; Evans, J. R. G.; Edirisinghe, M. J. Ink-jet printing of gold conductive tracks. J. Mater. Sci. -Mater. El. 2002, 13, 213–219.

4

Perelaer, J.; de Gans, B. J.; Schubert, U. S. Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 2006, 18, 2101–2104.

5

Smith, P. J.; Shin, D. Y.; Stringer, J. E.; Derby, B.; Reis, N. Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 2006, 41, 4153–4158.

6

Magdassi, S.; Bassa, A.; Vinetsky, Y.; Kamyshny, A. Silver nanoparticles as pigments for water-based ink-jet inks. Chem. Mater. 2003, 15, 2208–2217.

7

Bong, K. P.; Dongjo, K.; Sunho, J.; Jooho, M.; Jang, S. K. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 2007, 515, 7706–7711.

8

Bharathan, J.; Yang, Y. Polymer electroluminescent devices processed by inkjet printing: Ⅰ. Polymer light-emitting logo. Appl. Phys. Lett. 1998, 72, 2660–2662.

9

Beecher, P.; Servati, P.; Rozhin, A.; Colli, A.; Scardaci, V.; Pisana, S.; Hasan, T.; Flewitt, A. J.; Robertson, J.; Hsieh, G. W., et al. Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 2007, 102, 043710.

10

Denneulin, A.; Bras, J.; Blayo, A.; Khelifi, B.; Roussel-Dherbey, F.; Neuman, C. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions. Nanotechnology 2009, 20, 385701.

11

Fan, Z. J.; Wei, T.; Luo, G. H.; Wei, F. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J. Mater. Sci. 2005, 40, 5075–5077.

12

Kordas, K.; Mustonen, T.; Toth, G.; Jantunen, H.; Lajunen, M.; Soldano, C.; Talapatra, S.; Kar, S.; Vajtai, R.; Ajayan, P. M. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2006, 2, 1021–1025.

13
Song, J. W.; Yoon, Y. H.; Kim, J.; Han, C. S.; Choi, B. S.; Kim, J. H. Direct fabrication and patterning of transparent conductive carbon nanotube film using inkjet printing. In SID International Symposium, Digest of Technical Papers, SID; Soc. Information Display: Long Beach, 2007; pp. 1613–1616.https://doi.org/10.1889/1.2785629
14

Panhuis, M. I. H.; Heurtematte, A.; Small, W. R.; Paunov, V. N. Inkjet printed water sensitive transparent films from natural gum-carbon nanotube composites. Soft Matter 2007, 3, 840–843.

15

Wei, T.; Ruan, J.; Fan, Z. J.; Luo, G. H.; Wei, F. Preparation of a carbon nanotube film by ink-jet printing. Carbon 2007, 45, 2712–2716.

16

Small, W. R.; Panhuis, M. I. H. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 2007, 3, 1500–1503.

17

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

18

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

19

Li, D.; Kaner, R. B. Graphene-based materials. Science 2008, 320, 1170–1171.

20

Yan, W.; Zhiqiang, S.; Yi, H.; Yanfeng, M.; Chengyang, W.; Mingming, C.; Yongsheng, C. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.

21

Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

22

Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. Ch. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all graphene source/drain/gate electrodes. Nano Res. 2010, 10, 714–721.

23

He, Q.; Sudibya, H. G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 2010, 4, 3201–3208.

24

Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

25

Junbo, W.; Becerril, H.; Zhenan, B.; Zunfeng, L.; Yongsheng, C.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.

26

Xu, Y. F.; Long, G. K.; Huang, L.; Huang, Y.; Wan, X. J.; Ma, Y. F.; Chen, Y. S. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 2010, 48, 3308–3311.

27

Liu, Q.; Liu, Z. F.; Zhong, X. Y.; Yang, L. Y.; Zhang, N.; Pan, G. L.; Yin, S. G.; Chen, Y.; Wei, J. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 2009, 19, 894–904.

28

Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 2010, 4, 5263–5268.

29

Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

30

Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.

31

Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075.

32

Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q.; Zhang, H. Reduced graphene oxide films used as matrix of MALDI–TOF–MS for detection of octachlorodibenzo-p-dioxin. Chem. Commun. 2010, 46, 6974–6976.

33

Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

34

Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92–98.

35

Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157.

36

Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008, 2, 463–470.

37

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

38

Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.; Sun, W.; Chen, Y. S. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008, 20, 3924–3930.

39

Zhang, L.; Li, X.; Huang, Y.; Ma, Y. F.; Wan, X. J.; Chen, Y. S. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon 2010, 48, 2367–2371.

40

Long, Z.; Jiajie, L.; Yi, H.; Yanfeng, M.; Yan, W.; Yongsheng, C. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 2009, 47, 3365–3368.

41

Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Y.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846.

42

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

43

Yang, X. Y.; Lu, Y. H.; Ma, Y. F.; Li, Y. J.; Du, F.; Chen, Y. S. Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chem. Phys. Lett. 2006, 420, 416–420.

44

Magdassi, S.; Ben Moshe, M. Patterning of organic nano-particles by ink-jet printing of microemulsions. Langmuir 2003, 19, 939–942.

45

Kim, Y. -K.; Min, D. -H. Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir 2009, 25, 11302–11306.

46

Guo, T. F.; Chang, S. C.; Pyo, S.; Yang, Y. Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes. Langmuir 2002, 18, 8142–8147.

47

Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 1998, 31, 4309–4318.

48

Deegan, R.; Bakajin, O.; Dupont, T.; Huber, G.; Nagel, S.; Witten, T. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

Nano Research
Pages 675-684
Cite this article:
Huang L, Huang Y, Liang J, et al. Graphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors. Nano Research, 2011, 4(7): 675-684. https://doi.org/10.1007/s12274-011-0123-z

899

Views

392

Crossref

N/A

Web of Science

424

Scopus

27

CSCD

Altmetrics

Received: 27 November 2010
Revised: 04 March 2011
Accepted: 04 March 2011
Published: 25 March 2011
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2011
Return