AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of Monodisperse CoPt3 Nanocrystals and Their Catalytic Behavior for Growth of Boron Nanowires

Yuan Tian1Chengmin Shen1Chen Li1Xuezhao Shi1,2Yuan Huang1Hongjun Gao1( )
Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of SciencesBeijing 100190 China
College of Chemistry and Engineering Lanzhou UniversityLanzhou 730000 China
Show Author Information

Graphical Abstract

Abstract

Monodisperse CoPt3 nanocrystals (NCs) have been synthesized in oleylamine solution by an organic solvothermal method. The NCs were ellipsoidal particles with a diameter around 6.6 nm and length around 10 nm with a good single crystal structure. Using CoPt3 NCs as catalysts, large-area boron nanowires with diameters ranging from 30 to 50 nm were successfully prepared by chemical vapor deposition using a C/B/B2O3 mixture as the precursor. Structural analysis indicated that these nanowires were single crystalline with a β-rhombohedral structure. Measurement of the field emission properties of boron nanowire films showed that the boron nanowires have good field emission characteristics.

Electronic Supplementary Material

Download File(s)
nr-4-8-780_ESM.pdf (281 KB)

References

1

Leslie-Pelecky, D. L.; Rieke, R. D. Magnetic properties of nanostructured materials. Chem. Mater. 1996, 8, 1770–1783.

2

Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.

3

Jun, C. H.; Park, Y. J.; Yeon, Y. R.; Choi, J. R.; Lee, W. R.; Ko, S. J.; Cheon, J. Demonstration of a magnetic and catalytic Co@Pt nanoparticle as a dual-function nanoplatform. Chem. Commun. 2006, 1619–1621.

4

Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 7848–7849.

5

Chen, Q. S.; Sun, S. G.; Zhou, Z. Y.; Chen, Y. X.; Deng, S. B. CoPt nanoparticles and their catalytic properties in electrooxidation of CO and CH3OH studied by in situ FTIRS. Phys. Chem. Chem. Phys. 2008, 10, 3645–3654.

6

Martins, M. A.; Neves, M. C.; Esteves, A. C. C.; Girginova, P. I.; Guiomar, A. J.; Amaral, V. S.; Trindade, T. Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology 2007, 18, 215609.

7

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.

8

Shapiro, E. M.; Skrtic, S.; Sharer, K.; Hill, J. M.; Dunbar, C. E.; Koretsky, A. P. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. 2004, 101, 10901–10906.

9

Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

10

Wiekhorst, F.; Shevchenko, E.; Weller, H.; Kotzler, J. Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals. Phys. Rev. B 2003, 67, 224416.

11

Tzitzios, V.; Niarchos, D.; Margariti, G.; Fidler, J.; Petridis, D. Synthesis of CoPt nanoparticles by a modified polyol method: Characterization and magnetic properties. Nano-technology 2005, 16, 287–291.

12

Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.; Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A. Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. Nat. Mater. 2009, 8, 940–946.

13

Mandal, M.; Das, B.; Mandal, K. Synthesis of CoxPt1-x alloy nanoparticles of different phase by micellar technique and their properties study. J. Colloid Interface Sci. 2009, 335, 40–43.

14

Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells. J. Power Sources 2005, 141, 13–18.

15

Wang, C.; van der Vilet, D.; Chang, K. C.; You, H. D.; Strmcnik, D.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: Size-dependent activity. J. Phys. Chem. C 2009, 113, 19365–19368.

16

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

17

Jun, Y. W.; Choi, J. S.; Cheon, J. Heterostructured magnetic nanoparticles: Their versatility and high performance capabilities. Chem. Commun. 2007, 1203–1214.

18

Kockrick, E.; Schmidt, F.; Gedrich, K.; Rose, M.; George, T. A.; Freudenberg, T.; Kraehnert, R.; Skomski, R.; Sellmyer, D. J.; Kaskel, S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem. Mater. 2010, 22, 1624–1632.

19

Schaffel, F.; Schunemann, C.; Rummeli, M. H.; Taschner, C.; Pohl, D.; Kramberger, C.; Gemming, T.; Leonhardt, A.; Pichler, T.; Rellinghaus, B.; Buchner, B.; Schultz, L. Comparative study on thermal and plasma enhanced CVD grown carbon nanotubes from gas phase prepared elemental and binary catalyst particles. Phys. Stat. Sol. B 2008, 245, 1919–1922.

20

Sorge, K. D.; Klein, K. L.; Melechko, A. V.; Finkel, C. L.; Malkina, O.; Leventouri, T.; Fowlkes, J. D.; Rack, P. D.; Simpson, M. L. Magnetic properties of Fe–Co catalysts used for carbon nanofiber synthesis. J. Appl. Phys. 2008, 104, 033909.

21

Han, C. Y.; Xiao, Z. L.; Wang, H. H.; Lin, X. M.; Trasobares, S.; Cook, R. E. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors. J. Nanomaterials 2009, 1–11.

22

Coquay, P.; Peigney, A.; De Grave, E.; Flahaut, E.; Vandenberghe, R. E.; Laurent, C. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system. J. Phys. Chem. B 2005, 109, 17813–17824.

23

Moshfegh, A. Z. Nanoparticle catalysts. J. Phys. D: Appl. Phys. 2009, 42, 233001.

24

Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 2002, 124, 11480–11485.

25

Park, J. I.; Cheon, J. Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 2001, 123, 5743–5746.

26

Chinnasamy, C. N.; Jeyadevan, B.; Shinoda, K.; Tohji, K. Polyol-process-derived CoPt nanoparticles: Structural and magnetic properties. J. Appl. Phys. 2003, 93, 7583–7585.

27

Gibot, P.; Tronc, E.; Chaneac, C.; Jolivet, J. P.; Fiorani, D.; Testa, A. M. (Co, Fe)Pt nanoparticles by aqueous route; self-assembling, thermal and magnetic properties. J. Magn. Magn. Mater. 2005, 290, 555–558.

28

Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Chen, S. T.; Ding, H.; Gao, H. J. Monodispersive CoPt nanoparticles synthesized using chemical reduction method. Chin. Phys. Lett. 2008, 25, 1479–1481.

29

Massalski, T. B.; Okamoto, H.; Subramanian, P. R.; Kacprzak, L. Binary Alloy Phase Diagrams 2nd edn; ASM International, Materials Park: Ohio, 1990, 3.

30
JCPDS-International Center for Diffraction Data, PCPDFWIN, v. 2.1, 2000.
31

Lu, X.; Yang, Q.; Xiao, C.; Hirose, A. Field electron emission of carbon-based nanocone films. Appl. Phys. A 2006, 82, 293–296.

32

Xu, L. L.; Wu, X. L.; Xiong, X.; Zhu, J.; Chen, H. T.; Huang, G. S.; Chu, P. K. Synthesis and field-emission properties of roselike ZnO nanostructures. Appl. Phys. A 2008, 91, 247–250.

33

Li, S. Q.; Liang, Y. X.; Wang, T. H. Nonlinear characteristics of the Fowler–Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate. Appl. Phys. Lett. 2006, 88, 053107.

34

Liu, C.; Hu, Z.; Wu, Q.; Wang, X.; Chen, Y.; Sang, H.; Zhu, J.; Deng, S.; Xu, N. Vapor−solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 2005, 127, 1318–1322.

35

Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 2001, 123, 2791–2798.

36

Fowler, R. H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. London Ser. A 1928, 119, 173–181.

37

Stratton, R. Field emission from semiconductors. Proc. Phys. Soc. B 1955, 68, 746–757.

38

Wang, X. J.; Tian, J. F.; Yang, T. Z.; Bao, L. H.; Hui, C.; Liu, F.; Shen, C. M.; Gu, C. Z.; Xu, N. S.; Gao, H. J. Single crystalline boron nanocones: Electric transport and field emission properties. Adv. Mater. 2007, 19, 4480.

Nano Research
Pages 780-787
Cite this article:
Tian Y, Shen C, Li C, et al. Synthesis of Monodisperse CoPt3 Nanocrystals and Their Catalytic Behavior for Growth of Boron Nanowires. Nano Research, 2011, 4(8): 780-787. https://doi.org/10.1007/s12274-011-0134-9

450

Views

11

Crossref

N/A

Web of Science

11

Scopus

4

CSCD

Altmetrics

Received: 23 November 2010
Revised: 29 March 2011
Accepted: 29 March 2011
Published: 05 May 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return