AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ionic Liquid-Assisted One-Step Hydrothermal Synthesis of TiO2-Reduced Graphene Oxide Composites

Jianfeng ShenMin ShiBo YanHongwei MaNa LiMingxin Ye( )
Center of Special Materials and Technology Fudan UniversityShanghai 200433 China
Show Author Information

Graphical Abstract

Abstract

We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle–RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2–RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiO2–RGO composite exhibited excellent photocatalysis of hydrogen evolution.

Electronic Supplementary Material

Download File(s)
nr-4-8-795_ESM.pdf (623.6 KB)

References

1

Zhu, J. Graphene production: New solutions to a new problem. Nat. Nanotech. 2008, 3, 528–529.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Myung, S.; Park, J.; Lee, H.; Kim, K. S.; Hong, S. Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv. Mater. 2010, 22, 2045–2049.

4

Guo, C.; Yang, H.; Sheng, Z.; Lu, Z.; Song, Q.; Li, C. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014–3017.

5

Jia, X.; Campos-Delgado, J.; Terrones, M.; Meunier, V.; Dresselhaus, M. S. Graphene edges: A review of their fabrication and characterization. Nanoscale 2011, 3, 86–95.

6

Brownson, D. A. C.; Banks, C. E. Graphene electrochemistry: An overview of potential applications. Analyst, 2010, 135, 2768–2778.

7

Huang, L.; Wu, B.; Yu, G.; Liu, Y. Graphene: Learning from carbon nanotubes. J. Mater. Chem. 2011, 21, 919–929.

8

Pumera, M. Graphene-based nanomaterials and their electro-chemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.

9

Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

10

Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.

11

Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed. 2009, 48, 7752–7777.

12

Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.

13

Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T.; Economopoulos, S. P.; Sarantopoulou, E.; Tagmatarchis, N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. J. Mater. Chem. 2011, 21, 109–117.

14

Long, D.; Li, W.; Ling, L.; Jin, M.; Mochida, I.; Yoon, S. H. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 2010, 26, 16096–16102.

15

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J Am. Chem. Soc. 1958, 80, 1339.

16

McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

17

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

18

Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.

19

Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

20

Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 2008, 112, 17554–17558.

21

Wei, Z.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008, 8, 3141–3145.

22

Liu, J.; Jeong, H.; Liu, J.; Lee, K.; Park, J.; Ahn, Y. H.; Lee, S. Reduction of functionalized graphite oxides by trioctyl-phosphine in non-polar organic solvents. Carbon 2010, 48, 2282–2289.

23

Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanoshehets. ACS Nano 2010, 4, 2429–2437.

24

Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.

25

Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.

26

Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.

27

Zhou, X.; Wu, T.; Hu, B.; Yang, G.; Han, B. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 2010, 46, 3663–3665.

28

Zhang, H.; Li, X.; Chen, G. Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J. Mater. Chem. 2009, 19, 8223–8231.

29

Zhang, B.; Ning, W.; Zhang, J.; Qiao, X.; Zhang, J.; He, J.; Liu, C. Stable dispersions of reduced graphene oxide in ionic liquids. J. Mater. Chem. 2010, 20, 5401–5403.

30

Hu, H.; Yang, H.; Huang, P.; Cui, D.; Peng, Y.; Zhang, J.; Lu, F.; Lian, J.; Shi, D. Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Chem. Commun. 2010, 46, 3866–3868.

31

Zheng, W.; Liu, X.; Yan, Z.; Zhu, L. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 2009, 3, 115–122.

32

He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 2010, 48, 3139–3144.

33

Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. G. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 2010, 4, 3033–3038.

34

Kamat, P. V. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 2010, 1, 520–527.

35

Chen, S.; Wang, Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.

36

Shen, J.; Shi, M.; Li, N.; Yan, B.; Ma, H.; Hu, Y.; Ye, M. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.

37

Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One step synthesis of graphene oxide-magentic nanoparticle composite. J. Phys. Chem. C 2010, 114, 1498–1503.

38

Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.

39

Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C, 2008, 112, 5263–5266.

40

Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114, 12955–12959.

41

Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

42

Liu, J.; Bai, H.; Wang, Y.; Liu, Z.; Zhang, X.; Sun, D. D. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater 2010, 20, 4175–4181.

43

Li, B.; Zhang, X.; Li, X.; Wang, L.; Han, R.; Liu, B.; Zheng, W.; Li, X.; Liu, Y. Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin films. Chem. Commun. 2010, 46, 3499–3501.

44

Zhu, C.; Guo, S.; Wang, P.; Xing, L.; Fang, Y.; Zhai, Y.; Dong, S. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem. Commun. 2010, 46, 7148–7150.

45

Zhang, X.; Li, H.; Cui, X.; Lin, Y. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 2801–2806.

46

Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432.

47

Shen, J.; Li, N.; Shi, M.; Hu, Y.; Ye, M. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interface Sci. 2010, 348, 377–383.

48

Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82–85.

49

Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.

50

Tang, F.; Hou, L.; Guo, G. Preparation of TiO2 nanometer powders. J. Inorg. Mater. 2001, 16, 615–619.

51

Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.

52

Akhavan, O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 2011, 49, 11–18.

53

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

54

Akhavan, O. Graphene nanomesh by ZnO nanorod photo-catalysts. ACS Nano 2010, 4, 4174–4180.

55

Hu, H.; Wang, X.; Wang, J.; Wan, L.; Liu, F.; Zheng, H.; Chen, R.; Xu, C. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem. Phys. Lett. 2010, 484, 247–253.

56

Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin films for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.

57

Williams, G.; Kamat, P. V. Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.

58

Williams, G.; Seger, B.; Kamat, P. V. TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

59

Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049–2053.

60

Park, H. S.; Choi, B. G.; Yang, S. H.; Shin, W. H.; Kang, J. K.; Jung, D.; Hong, W. H. Ionic-liquid-assisted sonochemical synthesis of carbon nanotube-based nanohybrids: Control in the structures and interfacial characteristics. Small 2009, 5, 1754–1760.

61

Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gracio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796–4802.

62

Si, Y.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.

Nano Research
Pages 795-806
Cite this article:
Shen J, Shi M, Yan B, et al. Ionic Liquid-Assisted One-Step Hydrothermal Synthesis of TiO2-Reduced Graphene Oxide Composites. Nano Research, 2011, 4(8): 795-806. https://doi.org/10.1007/s12274-011-0136-7

760

Views

134

Crossref

N/A

Web of Science

142

Scopus

11

CSCD

Altmetrics

Received: 11 February 2011
Revised: 07 April 2011
Accepted: 07 April 2011
Published: 05 May 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return