AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Binder-Free Activated Carbon/Carbon Nanotube Paper Electrodes for Use in Supercapacitors

Guanghui Xu1Chao Zheng1Qiang Zhang1Jiaqi Huang1Mengqiang Zhao1Jingqi Nie1Xianghua Wang2Fei Wei1 ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua UniversityBeijing 100084 China
CNGC Wuzhou Engineering Design and Research Institute Beijing 100053 China
Show Author Information

Graphical Abstract

Abstract

Novel inexpensive, light, flexible, and even rollup or wearable devices are required for multi-functional portable electronics and developing new versatile and flexible electrode materials as alternatives to the materials used in contemporary batteries and supercapacitors is a key challenge. Here, binder-free activated carbon (AC)/carbon nanotube (CNT) paper electrodes for use in advanced supercapacitors have been fabricated based on low-cost, industrial-grade aligned CNTs. By a two-step shearing strategy, aligned CNTs were dispersed into individual long CNTs, and then 90 wt%–99 wt% of AC powder was incorporated into the CNT pulp and the AC/CNT paper electrode was fabricated by deposition on a filter. The specific capacity, rate performance, and power density of the AC/CNT paper electrode were better than the corresponding values for an AC/acetylene black electrode. The capacity reached a maximum value of 267.6 F/g with a CNT loading of 5 wt%, and the energy density and power density were 22.5 W·h/kg and 7.3 kW/kg at a high current density of 20 A/g. The AC/CNT paper electrode also showed a good cycle performance, with 97.5% of the original capacity retained after 5000 cycles at a scan rate of 200 mV/s. This method affords not only a promising paper-like nanocomposite for use in low-cost and flexible supercapacitors, but also a general way of fabricating multi-functional paper-like CNT-based nanocomposites for use in devices such as flexible lithium ion batteries and solar cells.

Electronic Supplementary Material

Download File(s)
nr-4-9-870_ESM.pdf (368.7 KB)

References

1

Rogers, J. A. Toward paperlike displays. Science 2001, 291, 1502–1503.

2

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

3

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

4

Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

5

Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

6

Li, X.; Rong, J. P.; Wei, B. Q. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 2010, 4, 6039–6049.

7

Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687.

8

Chen, Y. S.; Xu, Y. F.; Zhao, K.; Wan, X. J.; Deng, J. C.; Yan, W. B. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.

9

Chen, C. M.; Yang, Q. H.; Yang, Y. G.; Lv, W.; Wen, Y. F.; Hou, P. X.; Wang, M. Z.; Cheng, H. M. Self-assembled free-standing graphite oxide membrane. Adv. Mater. 2009, 21, 3007–3011.

10

Yan, X. B.; Tai, Z. X.; Chen, J. T.; Xue, Q. J. Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale 2011, 3, 212–216.

11

Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, DOI: 10.1002/adma.201004134.

10

Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12.

13

Li, G. R.; Feng, Z. P.; Ou, Y. N.; Wu, D. C.; Fu, R. W.; Tong, Y. X. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 2010, 26, 2209–2213.

14

Yan, J.; Wei, T.; Shao, B.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493.

15

Chen, P. C.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

16

Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.

17

Kang, Y. J.; Kim, B.; Chung, H.; Kim, W. Fabrication and characterization of flexible and high capacitance super-capacitors based on MnO2/CNT/papers. Synth. Met. 2011, 160, 2510–2514.

18

Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 2010, 22, E235–E241.

19

Niu, Z. Q.; Zhou, W. Y.; Chen, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D.; Xie, S. S. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440–1446.

20

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

21

Frackowiak, E.; Beguin, F. Carbon materials for the electro-chemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

22

Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868.

23

Zhang, L. L.; Zhou, R.; Zhao, X. S. Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 5983–5992.

24

Zhao, X. C.; Wang, A. Q.; Yan, J. W.; Sun, G. Q.; Sun, L. X.; Zhang, T. Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem. Mater. 2010, 22, 5463–5473.

25

Yang, X. Q.; Wu, D. C.; Chen, X. M.; Fu, R. W. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J. Phys. Chem. C 2010, 114, 8581–8586.

26

Wu, D. C.; Chen, X.; Lu, S. H.; Liang, Y. R.; Xu, F.; Fu, R. W. Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge-discharge process. Micropor. Mesopor. Mater. 2010, 131, 261–264.

27

Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 2008, 47, 373–376.

28

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328, 480–483.

29

Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.

30

Beguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv. Mater. 2005, 17, 2380–2384.

31

Su, D. S.; Schlogl, R. Nanostructured carbon and carbon nano-composites for electrochemical energy storage applications. ChemSusChem 2010, 3, 136–168.

32

Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D.; Hao, L.; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G. Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. Nanoscale 2011, 3, 529–545.

33

Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

34

Zhang, H.; Cao, G. P.; Wang, W. K.; Yuan, K. G.; Xu, B.; Zhang, W. F.; Cheng, J.; Yang, Y. S. Influence of micros-tructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim. Acta 2009, 54, 1153–1159.

35

Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833.

36

Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paper like polymer super-capacitors. Nano Lett. 2010, 10, 4025–4031.

37

Meng, C. Z.; Liu, C. H.; Fan, S. S. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem. Commun. 2009, 11, 186–189.

38

Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers. ACS Appl. Mater. Interf. 2010, 2, 2521–2529.

39

Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Kharistal, D. J.; Zhao, W. Y.; Lalia, B. S.; Hng, H. H.; Yan, Q. Y. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 2011, 5, 2013–2019.

40

Lima, M. D.; Fang, S. L.; Lepro, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-Gonzalez, J.; Castillo-Martinez, E.; Kozlov, M. E.; Oh, J. Y.; Rawat, N., Haines, C. S.; Haque, M. H.; Are, V.; Stoughton, S.; Zakhidov, A. A.; Baughman, R. H. Biscrolling nanotube sheets and functional guests into yarns. Science 2011, 331, 51–55.

41

Pico, F.; Pecharroman, C.; Anson, A.; Martinez, M. T.; Rojo, J. M. Understanding carbon–carbon composites as electrodes of supercapacitors—A study by AC and DC measurements. J. Electrochem. Soc. 2007, 154, A579–A586.

42

Taberna, P. L.; Chevallier, G.; Simon, P.; Plee, D.; Aubert, T. Activated carbon–carbon nanotube composite porous film for supercapacitor applications. Mater. Res. Bull. 2006, 41, 478–484.

43

Raymundo-Piñero, E.; Cadek, M.; Wachtler, M.; Béguin, F. Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem DOI:10.1002/cssc.201000376.

44

Portet, C.; Taberna, P. L.; Simon, P.; Flahaut, E. Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J. Power Sources 2005, 139, 371–378.

45

Xu, G. H.; Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Zhou, W. P.; Wei, F. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Langmuir 2010, 26, 2798–2804.

46

Xu, G. H.; Zhang, Q.; Zhou, W. P.; Huang, J. Q.; Wei, F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl. Phys. A 2008, 92, 531–539.

47

Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wang, Y.; Wei, F. Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 2008, 46, 1152–1158.

48

Zhang, Q.; Zhao, M. Q.; Liu, Y.; Cao, A. Y.; Qian, W. Z.; Lu, Y. F.; Wei, F. Energy-absorbing hybrid composites based on alternate carbon-nanotube and inorganic layers. Adv. Mater. 2009, 21, 2876–2880.

49

Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Nie, J. Q.; Wei, F. Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition. Carbon 2010, 48, 1196–1209.

50

Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Liu, Y.; Wang, Y.; Qian, W. Z.; Wei, F. Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition. Carbon 2009, 47, 2600–2610.

51

Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.

52

Bose, S.; Khare, R. A.; Moldenaers, P. Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer 2010, 51, 975–993.

53

Whitby, R. L. D.; Fukuda, T.; Maekawa, T.; James, S. L.; Mikhalovsky, S. V. Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 2008, 46, 949–956.

54

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Nie, J. Q.; Wei, F. Advanced materials from natural materials: Synthesis of aligned carbon nanotubes on wollastonites. ChemSusChem 2010, 3, 453–459.

55

Xu, F.; Cai, R. J.; Zeng, Q. C.; Zou, C.; Wu, D. C.; Li, F.; Lu, X. E.; Liang, Y. R.; Fu, R. W. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J. Mater. Chem. 2011, 121, 1970–1976.

56

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

57

Niu, C. M.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 1997, 70, 1480–1482.

58

Du, C. S.; Pan, N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 2006, 17, 5314–5318.

59

Huang, C. W.; Hsu, C. H.; Kuo, P. L.; Hsieh, C. T.; Teng, H. S. Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 2011, 49, 895–903.

60

Huang, C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. S. Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes. J. Power Sources 2008, 183, 406–410.

Nano Research
Pages 870-881
Cite this article:
Xu G, Zheng C, Zhang Q, et al. Binder-Free Activated Carbon/Carbon Nanotube Paper Electrodes for Use in Supercapacitors. Nano Research, 2011, 4(9): 870-881. https://doi.org/10.1007/s12274-011-0143-8

730

Views

172

Crossref

N/A

Web of Science

174

Scopus

4

CSCD

Altmetrics

Received: 23 March 2011
Revised: 22 April 2011
Accepted: 25 April 2011
Published: 21 May 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return