AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multicolor Luminescent Carbon Nanoparticles: Synthesis, Supramolecular Assembly with Porphyrin, Intrinsic Peroxidase-Like Catalytic Activity and Applications

Xiaohui Wang1,2Konggang Qu1,2Bailu Xu1,2Jinsong Ren1Xiaogang Qu1( )
Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology Changchun Institute Of Applied Chemistry, Chinese Academy of SciencesChangchun, Jilin 130022 China
Graduate School of the Chinese Academy of Sciences Changchun, Jilin 130022 China
Show Author Information

Graphical Abstract

Abstract

Luminescent carbon nanoparticles (CNPs) are newcomers to the world of nanomaterials and have shown great impact in health and environmental applications as well as being promising building blocks for future nanodevices because of their fascinating photoluminescence and potential to serve as nontoxic replacements for traditional heavy-metals-based quantum dots. Herein, fluorescent CNPs have been prepared from candle soot by refluxing with HNO3 and subsequently separated by a single centrifugation. The CNPs can be represented by the empirical formula C1H0.677O0.586N0.015Na0.069, and have a size of 20–100 nm, height of 3.0 nm, lifetime of 7.31 ns ± 0.06 ns and quantum yield of ~1.7%. Further studies demonstrate that: (1) the as-prepared CNPs exhibit excellent stability in biological media and their luminescence intensity does not change with ionic strength or pH in the physiological and pathological range of pH 4.5–8.8; (2) CNPs can act as electron donors and transporters and porphyrin can assemble onto CNPs through electrostatic and π-stacking interactions to form porphyrin–CNPs supramolecular composites; (3) CNPs have strong intrinsic peroxidase-like activity. Based on this intrinsic peroxidase activity, a simple, cheap, and highly selective and sensitive colorimetric and quantitative assay has been developed for the detection of glucose levels. This assay has been used to analyze real samples, such as diluted blood and fruit juice.

Electronic Supplementary Material

Download File(s)
nr-4-9-908_ESM.pdf (2 MB)

References

1

Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

2

Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D., et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

3

Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774–3776.

4

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744.

5

Yu, S. J.; Kang, M. W.; Chang, H. C.; Chen, K. M.; Yu, Y. C. Bright fluorescent nanodiamonds, no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604–17605.

6

Fu, C. C.; Lee, H. Y.; Chen, K.; Lim, T. S.; Wu, H. Y.; Lin, P. K.; Wei, P. K.; Tsao, P. H.; Chang, H. C.; Fann, W. S. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732.

7

Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis; characterization; and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551.

8

Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T. K.; Sun, X. L.; Ding, Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745.

9

Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.

10

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

11

Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 2009, 48, 4598–4601.

12

Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.

13

Peng, H.; Travas-Sejdic, J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 2009, 21, 5563–5565.

14

Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488.

15

Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.

16

Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nano-particles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.

17

Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

18

Mochalin, V. N.; Gogotsi, Y. Wet chemistry route to hydro-phobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 2009, 131, 4594–4595.

19

Bottini, M.; Balasubramanian, C.; Dawson, M. I.; Bergamaschi, A.; Bellucci, S.; Mustelin, T. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 831–836.

20

Rahman, G. M. A.; Guldi, D. M.; Campidelli, S.; Prato, M. Electronically interacting single wall carbon nanotube–porphyrin nanohybrids. J. Mater. Chem. 2006, 16, 62–65.

21

Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Ordered assembly of protonated porphyrin driven by single-wall carbon nano-tubes. J- and H-aggregates to nanorods. J. Am. Chem. Soc. 2005, 127, 11884–11885.

22

D'Souza, F.; Chitta, R.; Sandanayaka, A. S. D.; Subbaiyan, N. K.; D'Souza, L.; Araki, Y.; Ito, O. Self-assembled single-walled carbon nanotube: Zinc–porphyrin hybrids through ammonium ion–crown ether interaction, construction and electron transfer. Chem. Eur. J. 2007, 13, 8277–8284.

23

Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.; Prato, M. Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems. J. Am. Chem. Soc. 2005, 127, 9830–9838.

24

Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. -T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434.

25

Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum Publishers: New York, 1999.

26

Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5;10;15;20-tetrakis(1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

27

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

28

Song, Y. J.; Wang, X. H.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem. Eur. J. 2010, 16, 3617–3621.

29

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

30

Peng, Y. H.; Li, X.; Ren, J. S.; Qu, X. G. Single-walled carbon nanotubes binding to human telomeric i-motif DNA, significant acceleration of S1 nuclease cleavage rate. Chem. Commun. 2007, 5176–5178.

31

Kim, J. H.; Heller, D. A.; Jin, H.; Barone, P. W.; Song, C.; Zhang, J.; Trudel, L. J.; Wogan, G. N.; Tannenbaum, S. R.; Strano, M. S. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat. Chem. 2009, 1, 473–481.

32

Tang, Y.; Allen, B. L.; Kauffman, D. R.; Star, A. Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J. Am. Chem. Soc. 2009, 131, 13200–13201.

33

Tsai, Y. C.; Li, S. C.; Chen, J. M. Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir 2005, 21, 3653–3658.

34

Hrapovic, S.; Liu, Y.; Male, K. B.; Luong, J. H. T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2003, 76, 1083–1088.

35

Lu, J.; Drzal, L. T.; Worden, R. M.; Lee, I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 2007, 19, 6240–6246.

36

Wu, B. Y.; Hou, S. H.; Yin, F.; Zhao, Z. X.; Wang, Y. Y.; Wang, X. S.; Chen, Q. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens. Bioelectron. 2007, 22, 2854–2860.

37

Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 2007, 23, 528–535.

Nano Research
Pages 908-920
Cite this article:
Wang X, Qu K, Xu B, et al. Multicolor Luminescent Carbon Nanoparticles: Synthesis, Supramolecular Assembly with Porphyrin, Intrinsic Peroxidase-Like Catalytic Activity and Applications. Nano Research, 2011, 4(9): 908-920. https://doi.org/10.1007/s12274-011-0147-4

806

Views

215

Crossref

N/A

Web of Science

221

Scopus

10

CSCD

Altmetrics

Received: 28 February 2011
Revised: 29 April 2011
Accepted: 01 May 2011
Published: 18 May 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return