AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spatially Resolved Photoelectric Performance of Axial GaAs Nanowire pn-Diodes

Andrey Lysov( )Sasa VinajiMatthias OfferChristoph GutscheIngo RegolinWolfgang MertinMartin GellerWerner ProstGerd BacherFranz-Josef Tegude
Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47048, Duisburg Germany
Show Author Information

Graphical Abstract

Abstract

The spatially resolved photoelectric response of a single axial GaAs nanowire pn-diode has been investigated with scanning photocurrent and Kelvin probe force microscopy. Optical generation of carriers at the pn-junction has been shown to dominate the photoresponse. A photocurrent of 88 pA, an open circuit voltage of 0.56 V and a fill factor of 69% were obtained under AM 1.5 G conditions. The photocurrent followed the increasing photoexcitation with 0.24 A/W up to an illumination density of at least 90 W/cm2, which is important for potential applications in concentrator solar cells.

Electronic Supplementary Material

Video
nr-4-10-987_ESM_Video.avi

References

1

Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

2

Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. -E.; Wernersson, L. -E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.

3

Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.

4

Fuhrer, A.; Fröberg, L. E.; Pedersen, J. N.; Larsson, M. W.; Wacker, A.; Pistol, M. -E.; Samuelson, L. Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 2007, 7, 243–246.

5

Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, S.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.

6

Svensson, C. P. T.; Martensson, T.; Trägardh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201.

7

Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

8

Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv. Mat. 2009, 21, 973–978.

9

Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quant. Electron. 2010, 99, 1–12.

10

Heurlin, M.; Wickert, P.; Fält, S.; Borgström, M. T.; Deppert, K.; Samuelson, L.; Magnusson, M. H. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 2011, 11, 2028–2031.

11

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G. Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885–889.

12

Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

13

King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516.

14

van Kouwen, M. P.; van Weert, M. H. M.; Reimer, M. E.; Akopian, N.; Perinetti, U.; Algra, R. E.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Single quantum dot nanowire photodetectors. Appl. Phys. Lett. 2010, 97, 113108.

15

Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express, 2009, 2, 035004.

16

Dong, Y.; Tian, B.; Kempa, T. J.; Lieber, C. M. Coaxial group Ⅲ–Nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.

17

Colombo, C.; Heiß, M.; Grätzel, M.; Fontcuberta i Morral, A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

18

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core−shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

19
Karam, N. H.; Sherif, R. A.; King, R. R. Multijunction concentrator solar cells: An enabler for low-cost photovoltaic systems. In Concentrator Photovoltaics; Luque Lopéz, A. L.; Andreev, V. M., Eds. Springer: Berlin, 2007; p. 200.
20

Wanlass, M. W.; Ahrenkiel, S. P.; Ahrenkiel, R. K.; Albin, D. S.; Carapella, J. J.; Duda, A.; Geisz, J. F.; Kurtz, S.; Moriarty, T.; Wehrer, R. J.; Wernsman, B. Lattice-mismatched approaches for high-performance, Ⅲ–Ⅴ, photovoltaic energy converters. In Proc. 31st IEEE Photovoltaic Specialists Conf., Lake Buene Vista, Florida, 2005; pp. 530–535.

21

Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. -J. Controllable p-type doping of GaAs nanowires during vapor–liquid–solid growth. J. Appl. Phys. 2009, 105, 024305,

22

Gutsche, C.; Lysov, A.; Regolin, I.; Blekker, K.; Prost, W.; Tegude, F. -J. n-type doping of vapor-liquid-solid grown GaAs nanowires. Nanoscale Res. Lett. 2011, 6, 65–70.

23

Regolin, I.; Gutsche, C.; Lysov, A.; Blekker, K.; Li, Z. -A.; Spasova, M.; Prost, W.; Tegude, F. -J. Axial pn-junctions formed by MOVPE using DEZn and TESn in vapour-liquid-solid grown GaAs nanowires. J. Cryst. Growth 2011, 315, 143–147.

24

Lysov, A.; Offer, M.; Gutsche, C.; Regolin, I.; Topaloglu, S.; Geller, M.; Prost, W.; Tegude, F. -J. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology, 2011, 22, 085702.

25

Nonnenmacher, M.; O'Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

26

Katzer, Kl. -D.; Mertin, W.; Bacher, G.; Jaeger, A.; Streubel, K. Voltage drop in an (AlxGa1−x)0.5In0.5P light-emitting diode probed by Kelvin probe force microscopy. Appl. Phys. Lett. 2006, 89, 103522.

27

Lévêque, G.; Girard, P.; Skouri, E.; Yarekha, D. Measurements of electric potential in a laser diode by Kelvin probe force microscopy. Appl. Surf. Sci. 2000, 157, 251–255.

28

Minot, E. D.; Kelkensberg, F.; van Kouwen, M.; van Dam, J. A.; Kouwenhoven, L. P.; Zwiller, V.; Borgström, M.; Wunnicke, O.; Verheijen, M. A.; Bakkers, E. P. A. M. Single quantum dot nanowire LEDs. Nano Lett. 2007, 7, 367–371.

29

Vinaji, S.; Lochthofen, A.; Mertin, W.; Regolin, I.; Gutsche, C.; Prost, W.; Tegude, F. J.; Bacher, G. Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy. Nanotechnology 2009, 20, 385702.

30

Koren, E.; Rosenwaks, Y.; Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 2009, 95, 092105.

31

Koren, E.; Hyun, J. K.; Givan, U.; Hemesath, E. R.; Lauhon, L. J.; Rosenwaks, Y. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett. 2011, 11, 183–187.

32

Robin, F.; Jacobs, H.; Homan, O.; Stemmer, A.; Bächtold, W. Investigation of the cleaved surface of a p–i–n laser using Kelvin probe force microscopy and two-dimensional physical simulations. Appl. Phys. Lett. 2000, 76, 2907–2909.

33

Bürgi, L.; Sirringhaus, H.; Friend, R. H. Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 2002, 80, 2913–2915.

34

Tiwari, S.; Wright, S. L. Material properties of p-type GaAs at large dopings. Appl. Phys. Lett. 1990, 56, 563–565.

35

Liang, B. W.; Zou, Y. X.; Zhou, B. L.; Milnes, A. G. Minority carrier diffusion lengths in bulk n-type GaAs. J. Elect. Mater. 1987, 16, 177–180.

36

Graham, R.; Miller, C.; Oh, E.; Yu, D. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano. Lett. 2011, 11, 717–722.

37

Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, 2003; p. 73.

38

Bohren, C.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: New York, 1983; pp. 202–213.

39

Brönstrup, G.; Jahr, N.; Leiterer, C.; Csάki, A.; Fritzsche, W.; Christiansen, S. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 2010, 4, 7113–7122.

40

Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 2009, 9, 3349–3353.

41

LaPierre, R. R. Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 2011, 109, 034311.

Nano Research
Pages 987-995
Cite this article:
Lysov A, Vinaji S, Offer M, et al. Spatially Resolved Photoelectric Performance of Axial GaAs Nanowire pn-Diodes. Nano Research, 2011, 4(10): 987-995. https://doi.org/10.1007/s12274-011-0155-4

719

Views

30

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 13 April 2011
Revised: 26 May 2011
Accepted: 28 May 2011
Published: 10 June 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return