Journal Home > Volume 4 , Issue 11

One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.


menu
Abstract
Full text
Outline
About this article

One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties

Show Author's information Sheng XuZhong Lin Wang( )
School of Materials Science and Engineering Georgia Institute of TechnologyAtlanta, Georgia 30332-0245 USA

Abstract

One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their diverse current and future technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and the corresponding growth mechanisms, various nanostructures grown, their doping and alloying, and position-controlled growth on substrates. Finally, we will review their functional properties in catalysis, hydrophobic surface modification, sensing, and electronic, optical, optoelectronic, and energy harvesting devices.

Keywords: ZnO, optical, optoelectronic, solution growth, one dimensional nanostructures, electronic, energy harvesting devices

References(559)

1

Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

2

Look, D. C. Recent advances in ZnO materials and devices. Mat. Sci. Eng. B-. Adv. 2001, 80, 383–387.

3

Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R. ZnO nanowire growth and devices. Mat. Sci. Eng. R 2004, 47, 1–47.

4

Yi, G. C.; Wang, C. R.; Park, W. I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005, 20, S22–S34.

5

Wang, Z. L. Oxide nanobelts and nanowires—growth, properties and applications. J. Nanosci. Nanotechnol. 2008, 8, 27–55.

6

Wang, Z. L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano 2008, 2, 1987–1992.

7

Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.

8

Wang, Z. L. Ten years' venturing in ZnO nanostructures: From discovery to scientific understanding and to technology applications. Chinese Sci. Bull. 2009, 54, 4021–4034.

9

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

10

Govender, K.; Boyle, D. S.; O'Brien, P.; Binks, D.; West, D.; Coleman, D. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv. Mater. 2002, 14, 1221–1224.

DOI
11

Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv. Mater. 2004, 16, 87–90.

12

Mao, D. S.; Wang, X.; Li, W.; Liu, X. H.; Li, Q.; Xu, J. F. Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array. J. Vac. Sci. Technol. B 2002, 20, 278–281.

13

Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83, 144–146.

14

Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 2006, 18, 3275–3278.

15

Wei, T. Y.; Yeh, P. H.; Lu, S. Y.; Wang, Z. L. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 2009, 131, 17690–17695.

16

Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.

17

Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

18

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

19

Levy-Clement, C.; Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G. CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17, 1512–1515.

20

Weintraub, B.; Wei, Y. G.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Ed. 2009, 48, 8981–8985.

21

Wei, Y. G.; Xu, C.; Xu, S.; Li, C.; Wu, W. Z.; Wang, Z. L. Planar waveguide-nanowire integrated three-dimensional dye-sensitized solar cells. Nano Lett. 2010, 10, 2092–2096.

22

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

23

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

24

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

25

Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.

26

Wang, Z. L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.

27

Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

28

Laudise, R. A.; Ballman, A. A. Hydrothermal synthesis of zinc oxide and zinc sulfide. J. Phys. Chem. 1960, 64, 688–691.

29

Verges, M. A.; Mifsud, A.; Serna, C. J. Formation of rod-like zinc-oxide microcrystals in homogeneous solutions. J. Chem. Soc., Faraday Trans. 1990, 86, 959–963.

30

Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352.

31

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

32

Huang, M. H.; Wu, Y. Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.

DOI
33

Yao, B. D.; Chan, Y. F.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759.

34

Park, W. I.; Yi, G. C.; Kim, M. Y.; Pennycook, S. J. ZnO Nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater. 2002, 14, 1841–1843.

35

Park, W. I.; Kim, D. H.; Jung, S. W.; Yi, G. C. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 2002, 80, 4232–4234.

36

Yuan, H.; Zhang, Y. Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 2004, 263, 119–124.

37

Heo, Y. W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D. P.; Ren, F.; Fleming, P. H. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 3046–3048.

38

Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett. 2004, 396, 21–26.

39

Hong, J. I.; Bae, J.; Wang, Z. L.; Snyder, R. L. Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology 2009, 20, 085609.

40

Chiou, W. T.; Wu, W. Y.; Ting, J. M. Growth of single crystal ZnO nanowires using sputter deposition. Diam. Relat. Mater. 2003, 12, 1841–1844.

41

Xu, C. K.; Xu, G. D.; Liu, Y. K.; Wang, G. H. A simple and novel route for the preparation of ZnO nanorods. Solid State Commun. 2002, 122, 175–179.

42

Lin, D. D.; Pan, W.; Wu, H. Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning. J. Am. Ceram. Soc. 2007, 90, 71–76.

43

Lin, D.; Wu, H.; Pan, W. Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires. Adv. Mater. 2007, 19, 3968–3972.

44

Sui, X. M.; Shao, C. L.; Liu, Y. C. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett. 2005, 87, 113115.

45

Wu, J. J.; Wen, H. I.; Tseng, C. H.; Liu, S. C. Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 2004, 14, 806–810.

46

Zhang, H.; Yang, D. R.; Ma, X. Y.; Du, N.; Wu, J. B.; Que, D. L. Straight and thin ZnO nanorods: Hectogram-scale synthesis at low temperature and cathodoluminescence. J. Phys. Chem. B 2006, 110, 827–830.

47

Chang, P. C.; Lu, J. G. ZnO nanowire field-effect transistors. IEEE T. Electron Dev. 2008, 55, 2977–2987.

48

Xu, S.; Wei, Y.; Kirkham, M.; Liu, J.; Mai, W.; Davidovic, D.; Snyder, R. L.; Wang, Z. L. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 2008, 130, 14958–14959.

49

Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14, 2575–2591.

50

Xu, S.; Adiga, N.; Ba, S.; Dasgupta, T.; Wu, C. F. J.; Wang, Z. L. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 2009, 3, 1803–1812.

51

Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 2005, 50, 293–340.

52

Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi B 2007, 244, 3027–3073.

53

Schmidt-Mende, L.; MacManus-Driscoll, J. L. ZnO—nanostructures, defects, and devices. Mater. Today 2007, 10, 40–48.

54

Zang, J. F.; Li, C. M.; Cui, X. Q.; Wang, J. X.; Sun, X. W.; Dong, H.; Sun, C. Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanal. 2007, 19, 1008–1014.

55

Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. J. Cryst. Growth 2009, 311, 2549–2554.

56

Xu, S.; Shen, Y.; Ding, Y.; Wang, Z. L. Growth and transfer of monolithic horizontal ZnO nanowire superstructures onto flexible substrates. Adv. Funct. Mater. 2010, 20, 1493–1495.

57

Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 1999, 203, 186–196.

58

Demianets, L. N.; Kostomarov, D. V.; Kuz'mina, I. P.; Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002, 47, S86–S98.

59

Yamabi, S.; Imai, H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 2002, 12, 3773–3778.

60

Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic mechanisms of ZnO aggregation from ethanolic solution: Ion association, proton transfer, and self-organization. Nano Lett. 2008, 8, 2336–2340.

61

Liu, B.; Zeng, H. C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 2004, 20, 4196–4204.

62

Viswanatha, R.; Amenitsch, H.; Sarma, D. D. Growth kinetics of ZnO nanocrystals: A few surprises. J. Am. Chem. Soc. 2007, 129, 4470–4475.

63

Demianets, L. N.; Kostomarov, D. V. Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann. Chim. Sci. Mat. 2001, 26, 193–198.

64

Dem'yanets, L. N.; Kostomarov, D. V.; Kuz-mina, I. P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions. Inorg. Mater. 2002, 38, 124–131.

65

Cheng, B.; Samulski, E. T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 2004, 986–987.

66

Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K. Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 2006, 17, 3632–3636.

67

Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.

68

Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177.

69

Hou, X. M.; Zhou, F.; Sun, Y. B.; Liu, W. M. Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater. Lett. 2007, 61, 1789–1792.

70

Alammar, T.; Mudring, A. V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett. 2009, 63, 732–735.

71

Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O'Brien, S. Zinc oxide quantum rods. J. Am. Chem. Soc. 2004, 126, 6206–6207.

72

Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.

DOI
73

Zhang, D. F.; Sun, L. D.; Yin, J. L.; Yan, C. H.; Wang, R. M. Attachment-driven morphology evolvement of rectangular ZnO nanowires. J. Phys. Chem. B 2005, 109, 8786–8790.

74

Guo, L.; Ji, Y. L.; Xu, H. B.; Simon, P.; Wu, Z. Y. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 2002, 124, 14864–14865.

75

Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ji, X. X.; Li, Z. K.; He, X.; Sun, F. L. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: Direct solution synthesis, photoluminescence, and field emission. J. Phys. Chem. C 2007, 111, 4990–4997.

76

Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 2007, 7, 2467–2471.

77

Tak, Y.; Yong, K. J. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J. Phys. Chem. B 2005, 109, 19263–19269.

78

Xu, C. K.; Shin, P.; Cao, L. L.; Gao, D. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 125–129.

79

Postels, B.; Wehmann, H. H.; Bakin, A.; Kreye, M.; Fuhrmann, D.; Blaesing, J.; Hangleiter, A.; Krost, A.; Waag, A. Controlled low-temperature fabrication of ZnO nanopillars with a wet-chemical approach. Nanotechnology 2007, 18, 195602.

80

Hua, G. M.; Zhang, Y.; Zhang, J. X.; Cao, X. L.; Xu, W.; Zhang, L. D. Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells. Mater. Lett. 2008, 62, 4109–4111.

81

Tang, Q.; Zhou, W. J.; Shen, J. M.; Zhang, W.; Kong, L. F.; Qian, Y. T. A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem. Commun. 2004, 712–713.

82

Xu, S.; Wang, Z. L. Effect of dissolved oxygen in water on the growth kinetics of ZnO nanowire arrays. Unpublished results.

83

Boyle, D. S.; Govender, K.; O'Brien, P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: Substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 2002, 80–81.

84

Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

85

Ahuja, I. S.; Yadava, C. L.; Singh, R. Structural information on manganese(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ), zinc(Ⅱ) and cadmium (Ⅱ) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234.

86

Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 013001.

87

Ashfold, M. N. R.; Doherty, R. P.; Ndifor-Angwafor, N. G.; Riley, D. J.; Sun, Y. The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 2007, 515, 8679–8683.

88

Unalan, H. E.; Hiralal, P.; Rupesinghe, N.; Dalal, S.; Milne, W. I.; Amaratunga, G. A. J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 2008, 19, 255608.

89

Jung, S. H.; Oh, E.; Lee, K. H.; Park, W.; Jeong, S. H. A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 2007, 19, 749–753.

90

Shi, L.; Bao, K. Y.; Cao, J.; Qian, Y. T. Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. CrystEngComm 2009, 11, 2009–2014.

91

Xu, S.; Lao, C.; Weintraub, B.; Wang, Z. L. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 2008, 23, 2072–2077.

92

Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2010, 2, 1824–1828.

93

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

94

Liu, T. Y.; Liao, H. C.; Lin, C. C.; Hu, S. H.; Chen, S. Y. Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 2006, 22, 5804–5809.

95

Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059–4063.

96

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

97

Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687.

98

Na, J. S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 2009, 3, 3191–3199.

99

Kang, B. S.; Pearton, S. J.; Ren, F. Low temperature (< 100 ℃) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 2007, 90, 083104.

DOI
100

Yang, Y.; Chu, Y.; Zhang, Y. P.; Yang, F. Y.; Liu, J. L. Polystyrene–ZnO core–shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J. Solid State Chem. 2006, 179, 470–475.

101

Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, J. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615.

102

Xu, S.; Wei, Y. G.; Liu, J.; Yang, R.; Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032.

103

Sun, H. K.; Luo, M.; Weng, W. J.; Cheng, K.; Du, P.; Shen, G.; Han, G. R. Position and density control in hydrothermal growth of ZnO nanorod arrays through preformed micro/nanodots. Nanotechnology 2008, 19, 395602.

104

Ma, T.; Guo, M.; Zhang, M.; Zhang, Y. J.; Wang, X. D. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18, 035605.

105

Hsiao, C. S.; Peng, C. H.; Chen, S. Y.; Liou, S. C. Tunable growth of ZnO nanorods synthesized in aqueous solutions at low temperatures. J. Vac. Sci. Technol. B 2006, 24, 288–291.

106

Qiu, J. J.; Li, X. M.; He, W. Z.; Park, S. J.; Kim, H. K.; Hwang, Y. H.; Lee, J. H.; Kim, Y. D. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20, 155603.

107

Cao, X. L.; Zeng, H. B.; Wang, M.; Xu, X. J.; Fang, M.; Ji, S. L.; Zhang, L. D. Large scale fabrication of quasi-aligned ZnO stacking nanoplates. J. Phys. Chem. C 2008, 112, 5267–5270.

108

Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

109

Kar, S.; Dev, A.; Chaudhuri, S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. J. Phys. Chem. B 2006, 110, 17848–17853.

110

Peterson, R. B.; Fields, C. L.; Gregg, B. A. Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. Langmuir 2004, 20, 5114–5118.

111

Zhou, Z. Z.; Deng, Y. L. Kinetics study of ZnO nanorod growth in solution. J. Phys. Chem. C 2009, 113, 19853–19858.

112

Liu, J.; She, J. C.; Deng, S. Z.; Chen, J.; Xu, N. S. Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics. J. Phys. Chem. C 2008, 112, 11685–11690.

113

Weintraub, B.; Chang, S.; Singamaneni, S.; Han, W. H.; Choi, Y. J.; Bae, J. H.; Kirkham, M.; Tsukruk, V. V.; Deng, Y. L. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission. Nanotechnology 2008, 19, 435302.

114

Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 2007, 19, 67–72.

115

Zeng, H. B.; Cui, J. B.; Cao, B. Q.; Gibson, U.; Bando, Y.; Golberg, D. Electrochemical deposition of ZnO nanowire arrays: Organization, doping, and properties. Sci. Adv. Mater. 2010, 2, 336–358.

116

Izaki, M.; Watanabe, M.; Aritomo, H.; Yamaguchi, I.; Asahina, S.; Shinagawa, T.; Chigane, M.; Inaba, M.; Tasaka, A. Zinc oxide nano-cauliflower array with room temperature ultraviolet light emission. Cryst. Growth Des. 2008, 8, 1418–1421.

117

Yu, L. G.; Zhang, G. M.; Li, S. Q.; Xi, Z. H.; Guo, D. Z. Fabrication of arrays of zinc oxide nanorods and nanotubes in aqueous solution under an external voltage. J. Cryst. Growth 2007, 299, 184–188.

118

Konenkamp, R.; Boedecker, K.; Lux-Steiner, M. C.; Poschenrieder, M.; Zenia, F.; Levy-Clement, C.; Wagner, S. Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 2000, 77, 2575–2577.

119

Cui, J. B.; Soo, Y. C.; Chen, T. P.; Gibson, U. J. Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 4475–4479.

120

Cui, J. B.; Gibson, U. J. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays. Appl. Phys. Lett. 2005, 87, 133108.

121

Elias, J.; Tena-Zaera, R.; Levy-Clement, C. Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 2008, 621, 171–177.

122

Zhao, J.; Jin, Z. G.; Li, T.; Liu, X. X.; Liu, Z. F. Growth of ZnO nanorods by the chemical solution method with assisted electrical field. J. Am. Ceram. Soc. 2006, 89, 2654–2659.

123

Elias, J.; Tena-Zaera, R.; Levy-Clement, C. Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 5736–5741.

124

Xu, L. F.; Guo, Y.; Liao, Q.; Zhang, J. P.; Xu, D. S. Morphological control of ZnO nanostructures by electro-deposition. J. Phys. Chem. B 2005, 109, 13519–13522.

125

Tena-Zaera, R.; Elias, J.; Wang, G.; Levy-Clement, C. Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J. Phys. Chem. C 2007, 111, 16706–16711.

126

Tena-Zaera, R.; Elias, J.; Levy-Clement, C.; Bekeny, C.; Voss, T.; Mora-Sero, I.; Bisquert, J. Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J. Phys. Chem. C 2008, 112, 16318–16323.

127

Zhou, H. J.; Wong, S. S. A facile and mild synthesis of 1-D ZnO, CuO, and α-Fe2O3 nanostructures and nanostructured arrays. ACS Nano 2008, 2, 944–958.

128

Anthony, S. P.; Lee, J. I.; Kim, J. K. Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Appl. Phys. Lett. 2007, 90, 103107.

129

Zheng, M. J.; Zhang, L. D.; Li, G. H.; Shen, W. Z. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 2002, 363, 123–128.

130

Liu, B.; Zeng, H. C. Fabrication of ZnO "dandelions" via a modified Kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.

131

Cong, H. P.; Yu, S. H. Hybrid ZnO-dye hollow spheres with new optical properties from a self-assembly process based on Evans blue dye and cetyltrimethylammonium bromide. Adv. Funct. Mater. 2007, 17, 1814–1820.

132

Zhang, J.; Sun, L. D.; Pan, H. Y.; Liao, C. S.; Yan, C. H. ZnO nanowires fabricated by a convenient route. New J. Chem. 2002, 26, 33–34.

133

Sun, X. M.; Chen, X.; Deng, Z. X.; Li, Y. D. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 2003, 78, 99–104.

134

Zhang, H.; Yang, D.; Ji, Y. J.; Ma, X. Y; Xu, J.; Que, D. L. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 2004, 108, 3955–3958.

135

Atanasova, P.; Weitz, R. T.; Gerstel, P.; Srot, V.; Kopold, P.; van Aken, P. A.; Burghard, M.; Bill, J. DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 2009, 20, 365302.

136

Kim, J. H.; Kim, E. M.; Andeen, D.; Thomson, D.; DenBaars, S. P.; Lange, F. F. Growth of heteroepitaxial ZnO thin films on GaN-buffered Al2O3(0001) substrates by low-temperature hydrothermal synthesis at 90 ℃. Adv. Funct. Mater. 2007, 17, 463–471.

137

Cao, B. Q.; Cai, W. P.; Duan, G. T.; Li, Y.; Zhao, Q.; Yu, D. P. A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties. Nanotechnology 2005, 16, 2567–2574.

138

Liu, R.; Vertegel, A. A.; Bohannan, E. W.; Sorenson, T. A.; Switzer, J. A. Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem. Mater. 2001, 13, 508–512.

139

Shen, L. M.; Bao, N. Z.; Yanagisawa, K.; Zheng, Y. Q.; Domen, K.; Gupta, A.; Grimes, C. A. Direct growth of comet-like superstructures of Au-ZnO submicron rod arrays by solvothermal soft chemistry process. J. Solid State Chem. 2007, 180, 213–220.

140

Gao, P. X.; Lee, J. L.; Wang, Z. L. Multicolored ZnO nanowire architectures on trenched silicon substrates. J. Phys. Chem. C 2007, 111, 13763–13769.

141

Lee, J. Y.; Yin, D. H.; Horiuchi, S. Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography. Chem. Mater. 2005, 17, 5498–5503.

142

Xu, C. X.; Wei, A.; Sun, X. W.; Dong, Z. L. Aligned ZnO nanorods synthesized by a simple hydrothermal reaction. J. Phys. D: Appl. Phys. 2006, 39, 1690–1693.

143

Niarchos, G.; Makarona, E.; Tsamis, C. Growth of ZnO nanorods on patterned templates for efficient, large-area energy scavengers. Microsyst. Technol. 2010, 16, 669–675.

144

Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology 2007, 18, 115603.

145

Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Effect of substrate on the structure and optical properties of ZnO nanorods. J. Phys. D: Appl. Phys. 2008, 41, 115303.

146

Zhou, H. L.; Chen, A.; Jian, L. K.; Ooi, K. F.; Goh, G. K. L.; Zang, K. Y.; Chua, S. J. Template-directed selective growth of ordered ZnO nanostructures on GaN by the hydrothermal method. J. Cryst. Growth 2008, 310, 3626–3629.

147

Cole, J. J.; Wang, X.; Knuesel, R. J.; Jacobs, H. O. Integration of ZnO microcrystals with tailored dimensions forming light emitting diodes and UV photovoltaic cells. Nano Lett. 2008, 8, 1477–1481.

148

Lee, S. D.; Kim, Y. S.; Yi, M. S.; Choi, J. Y.; Kim, S. W. Morphology control and electroluminescence of ZnO nanorod/GaN heterojunctions prepared using aqueous solution. J. Phys. Chem. C 2009, 113, 8954–8958.

149

Cole, J. J.; Wang, X. Y.; Knuesel, R. J.; Jacobs, H. O. Patterned growth and transfer of ZnO micro- and nanocrystals with size and location control. Adv. Mater. 2008, 20, 1474–1478.

150

Kim, J. H.; Andeen, D.; Lange, F. F. Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels. Adv. Mater. 2006, 18, 2453–2457.

151

Le, H. Q.; Chua, S. J.; Koh, Y. W.; Loh, K. P.; Chen, Z.; Thompson, C. V.; Fitzgerald, E. A. Growth of single crystal ZnO nanorods on GaN using an aqueous solution method. Appl. Phys. Lett. 2005, 87, 101908.

152

Pauporte, T.; Lincot, D.; Viana, B.; Pelle, F. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition. Appl. Phys. Lett. 2006, 89, 233112.

153

Le, H. Q.; Chua, S. J.; Loh, K. P.; Fitzgerald, E. A.; Koh, Y. W. Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis. Nanotechnology 2006, 17, 483–488.

154

Zhang, H.; Yang, D. R.; Li, D. S.; Ma, X. Y.; Li, S. Z.; Que, D. L. Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Des. 2005, 5, 547–550.

155

Wu, W. B.; Hu, G. D.; Cui, S. G.; Zhou, Y.; Wu, H. T. Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst. Growth Des. 2008, 8, 4014–4020.

156

Zhou, Y.; Wu, W. B.; Hu, G. D.; Wu, H. T.; Cui, S. G. Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Mater. Res. Bull. 2008, 43, 2113–2118.

157

Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J. Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 2002, 124, 12954–12955.

158

Yang, Z.; Liu, Q. H.; Yu, H. C.; Zou, B. S.; Wang, Y. G.; Wang, T. H. Substrate-free growth, characterization and growth mechanism of ZnO nanorod close-packed arrays. Nanotechnology 2008, 19, 035704.

159

Hidber, P. C.; Graule, T. J.; Gauckler, L. J. Citric acid - A dispersant for aqueous alumina suspensions. J. Am. Ceram. Soc. 1996, 79, 1857–1867.

160

Mclaren, A.; Valdes-Solis, T.; Li, G. Q.; Tsang, S. C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009, 131, 12540–12541.

161

Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826.

162

Liang, L.; Liu, J.; Windisch, C. F.; Exarhos, G. J.; Lin, Y. H. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 2002, 41, 3665–3668.

DOI
163

Tian, Z. R. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; Xu, H. F. Large oriented arrays and continuous films of TiO2-based nanotubes. J. Am. Chem. Soc. 2003, 125, 12384–12385.

164

Yan, J.; Fang, X. S.; Zhang, L. D.; Bando, Y.; Gautam, U. K.; Dierre, B.; Sekiguchi, T.; Golberg, D. Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 2008, 8, 2794–2799.

165

Choopun, S.; Hongsith, N.; Tanunchai, S.; Chairuangsri, T.; Krua-in, C.; Singkarat, S.; Vilaithonga, T.; Mangkorntong, P.; Mangkorntong, N. Single-crystalline ZnO nanobelts by RF sputtering. J. Cryst. Growth 2005, 282, 365–369.

166

Wei, Y. G.; Ding, Y.; Li, C.; Xu, S.; Ryo, J. H.; Dupuis, R.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. J. Phys. Chem. C 2008, 112, 18935–18937.

167

Xi, Y.; Hu, C. G.; Han, X. Y.; Xiong, Y. F.; Gao, P. X.; Liu, G. B. Hydrothermal synthesis of ZnO nanobelts and gas sensitivity property. Solid State Commun. 2007, 141, 506–509.

168

Yang, J. H.; Liu, G. M.; Lu, J.; Qiu, Y. F.; Yang, S. H. Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate. Appl. Phys. Lett. 2007, 90, 103109.

169

Song, R. Q.; Xu, A. W.; Deng, B.; Li, Q.; Chen, G. Y. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv. Funct. Mater. 2007, 17, 296–306.

170

Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

171

Zhang, J.; Sun, L. D.; Liao, C. S.; Yan, C. H. A simple route towards tubular ZnO. Chem. Commun. 2002, 262–263.

172

She, G. W.; Zhang, X. H.; Shi, W. S.; Fan, X.; Chang, J. C. Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Electrochem. Commun. 2007, 9, 2784–2788.

173

Sun, Y.; Fuge, G. M.; Fox, N. A.; Riley, D. J.; Ashfold, M. N. R. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater. 2005, 17, 2477–2481.

174

Jiang, H.; Hu, J.; Gu, F.; Li, C. Self-assembly of solid or tubular ZnO rods into twinning microprisms via a hydrothermal route. J. Alloys Compd. 2009, 478, 550–553.

175

Wang, Z.; Qian, X. F.; Yin, J.; Zhu, Z. K. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 2004, 20, 3441–3448.

176

Yu, K.; Jin, Z. G.; Liu, X. X.; Zhao, J.; Feng, J. Y. Shape alterations of ZnO nanocrystal arrays fabricated from NH3·H2O solutions. Appl. Surf. Sci. 2007, 253, 4072–4078.

177

Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 2009, 19, 9260–9264.

178

Yang, A. L.; Cui, Z. L. ZnO layer and tubular structures synthesized by a simple chemical solution route. Mater. Lett. 2006, 60, 2403–2405.

179

Elias, J.; Tena-Zaera, R.; Wang, G. Y.; Levy-Clement, C. Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem. Mater. 2008, 20, 6633–6637.

180

Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 2005, 127, 2378–2379.

181

Israr, M. Q.; Sadaf, J. R.; Yang, L. L.; Nur, O.; Willander, M.; Palisaitis, J.; Persson, P. O. A. Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties. Appl. Phys. Lett. 2009, 95, 073114.

182

She, G. W.; Zhang, X. H.; Shi, W. S.; Fan, X.; Chang, J. C.; Lee, C. S.; Lee, S. T.; Liu, C. H. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Appl. Phys. Lett. 2008, 92, 053111.

183

Sun, Y.; Riley, D. J.; Ashfold, M. N. R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 2006, 110, 15186–15192.

184

Li, Q. C.; Kumar, V.; Li, Y.; Zhang, H. T.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem. Mater. 2005, 17, 1001–1006.

185

Tong, Y. H.; Liu, Y. C.; Shao, C. L.; Liu, Y. X.; Xu, C. S.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W. Growth and optical properties of faceted hexagonal ZnO nanotubes. J. Phys. Chem. B 2006, 110, 14714–14718.

186

Li, F.; Ding, Y.; Gao, P. X. X.; Xin, X. Q.; Wang, Z. L. Single-cystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism. Angew. Chem. Int. Ed. 2004, 43, 5238–5242.

187

Jung, S.; Cho, W.; Lee, H. J.; Oh, M. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew. Chem. Int. Ed. 2009, 48, 1459–1462.

188

Liu, X. G. Zinc oxide nano- and microfabrication from coordination-polymer templates. Angew. Chem. Int. Ed. 2009, 48, 3018–3021.

189

Tong, Y. H.; Liu, Y. C.; Dong, L.; Zhao, D. X.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J. Phys. Chem. B 2006, 110, 20263–20267.

190

Magalhaes, M.; Pusiol, D.; Ramia, M. E.; Neto, A. M. F. Phase diagram of a lyotropic mixture sodium bis (2-ethylhexyl) sulfosuccinate/dodecanol/water: Reverse micellar, cylindrical, lamellar, and sponge phases. J. Chem. Phys. 1998, 108, 3835–3843.

191

Oner, M.; Norwig, J.; Meyer, W. H.; Wegner, G. Control of ZnO crystallization by a PEO-b-PMAA diblock copolymer. Chem. Mater. 1998, 10, 460–463.

192

Taubert, A.; Kubel, C.; Martin, D. C. Polymer-induced microstructure variation in zinc oxide crystals precipitated from aqueous solution. J. Phys. Chem. B 2003, 107, 2660–2666.

193

Zhang, S.; Shen, Y.; Fang, H.; Xu, S.; Song, J. H.; Wang, Z. L. Growth and replication of ordered ZnO nanowire arrays on general flexible substrates. J. Mater. Chem. 2010, 20, 10606–10610.

194

Wang, B. G.; Shi, E. W.; Zhong, W. Z. Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. Cryst. Res. Techol. 1998, 33, 937–941.

DOI
195

Zhang, T. R.; Dong, W. J.; Keeter-Brewer, M.; Konar, S.; Njabon, R. N.; Tian, Z. R. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 2006, 128, 10960–10968.

196

Zhang, T. R.; Dong, W. J.; Njabon, R. N.; Varadan, V. K.; Tian, Z. R. Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches. J. Phys. Chem. C 2007, 111, 13691–13695.

197

Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335–344.

198

Sounart, T. L.; Liu, J.; Voigt, J. A.; Huo, M.; Spoerke, E. D.; McKenzie, B. Secondary nucleation and growth of ZnO. J. Am. Chem. Soc. 2007, 129, 15786–15793.

199

Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666–671.

200

Mo, M.; Yu, J. C.; Zhang, L. Z.; Li, S. K. A. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 2005, 17, 756–760.

201

Liu, B.; Zeng, H. C. Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater. 2007, 19, 5824–5826.

202

Chow, L.; Lupan, O.; Heinrich, H.; Chai, G. Self-assembly of densely packed and aligned bilayer ZnO nanorod arrays. Appl. Phys. Lett. 2009, 94, 163105.

203

Zhang, H.; Yang, D. R.; Ma, X. Y.; Que, D. L. Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction. J. Phys. Chem. B 2005, 109, 17055–17059.

204

Li, H. X.; Xia, M. X.; Dai, G. Z.; Yu, H. C.; Zhang, Q. L.; Pan, A. L.; Wang, T. H.; Wang, Y. G.; Zou, B. S. Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C 2008, 112, 17546–17553.

205

Xu, C.; Wu, J. M.; Desai, U. V.; Gao, D. Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J. Am. Chem. Soc. 2011, 133, 8122–8125.

206

Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

207

Koh, Y. W.; Loh, K. P. Hexagonally packed zinc oxide nanorod bundles on hydrotalcite sheets. J. Mater. Chem. 2005, 15, 2508–2514.

208

Thevenot, F.; Szymanski, R.; Chaumette, P. Preparation and characterization of Al-rich Zn-Al hydrotalcite-like compounds. Clays Clay Miner. 1989, 37, 396–402.

209

Liu, J. P.; Huang, X. T.; Li, Y. Y.; Sulieman, K. M.; He, X.; Sun, F. L. Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical heterostructures. J. Phys. Chem. B 2006, 110, 21865–21872.

210

Liu, L.; Fu, L.; Liu, Y.; Liu, Y. L.; Jiang, P.; Liu, S. Q.; Gao, M. Y.; Tang, Z. Y. Bioinspired synthesis of vertically aligned ZnO nanorod arrays: Toward greener chemistry. Cryst. Growth Des. 2009, 9, 4793–4796.

211

Tang, Y. W.; Hu, X. Y.; Chen, M. J.; Luo, L. J.; Li, B. H.; Zhang, L. Z. CdSe nanocrystal sensitized ZnO core–shell nanorod array films: Preparation and photovoltaic properties. Electrochim. Acta 2009, 54, 2742–2747.

212

Hao, Y. Z.; Pei, J.; Wei, Y.; Cao, Y. H.; Jiao, S. H.; Zhu, F.; Li, J. J.; Xu, D. H. Efficient semiconductor-sensitized solar cells based on poly(3-hexylthiophene)@CdSe@ZnO core–shell nanorod arrays. J. Phys. Chem. C 2010, 114, 8622–8625.

213

Wang, X. N.; Zhu, H. J.; Xu, Y. M.; Wang, H.; Tao, Y.; Hark, S.; Xiao, X. D.; Li, Q. A. Aligned ZnO/CdTe core–shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 2010, 4, 3302–3308.

214

Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335–344.

215

Shi, L.; Xu, Y. M.; Hark, S. K.; Liu, Y.; Wang, S.; Peng, L. M.; Wong, K. W.; Li, Q. Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 2007, 7, 3559–3563.

216

Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.; Welland, M. E. A simple low temperature synthesis route for ZnO–MgO core–shell nanowires. Nanotechnology 2008, 19, 465603.

217

Plank, N. O. V.; Howard, I.; Rao, A.; Wilson, M. W. B.; Ducati, C.; Mane, R. S.; Bendall, J. S.; Louca, R. R. M.; Greenham, N. C.; Miura, H.; Friend, R. H.; Snaith, H. J.; Welland, M. E. Efficient ZnO nanowire solid-state dye-sensitized solar cells using organic dyes and core–shell nanostructures. J. Phys. Chem. C 2009, 113, 18515–18522.

218

Tak, Y.; Yong, K. A novel heterostructure of Co3O4/ZnO nanowire array fabricated by photochemical coating method. J. Phys. Chem. C 2008, 112, 74–79.

219

Wang, Z.; Qian, X. F.; Li, Y.; Yin, J.; Zhu, Z. K. Large-scale synthesis of tube-like ZnS and cable-like ZnS-ZnO arrays: Preparation through the sulfuration conversion from ZnO arrays via a simple chemical solution route. J. Solid State Chem. 2005, 178, 1589–1594.

220

Panda, S. K.; Dev, A.; Chaudhuri, S. Fabrication and luminescent properties of c-axis oriented ZnO–ZnS core–shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. J. Phys. Chem. C 2007, 111, 5039–5043.

221

Chen, C. Y.; Lin, C. A.; Chen, M. J.; Lin, G. R.; He, J. H. ZnO/Al2O3 core–shell nanorod arrays: Growth, structural characterization, and luminescent properties. Nanotechnology 2009, 20, 185605.

222

Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO–Al2O3 and ZnO–TiO2 core–shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.

223

Dergacheva, M. B.; Statsyuk, V. N.; Fogel, L. A. Electrodeposition of CdTe from ammonia-chloride buffer electrolytes. J. Electroanal. Chem. 2005, 579, 43–49.

224

Kum, M. C.; Yoo, B. Y.; Rheem, Y.; Bozhilov, K. N.; Chen, W.; Mulchandani, A.; Myung, N. V. Synthesis and characterization of cadmium telluride nanowire. Nanotechnology 2008, 19, 325711.

225

Xu, D. S.; Guo, Y. G.; Yu, D. P.; Guo, G. L.; Tang, Y. Q.; Yu, D. P. Highly ordered and well-oriented single-crystal CdTe nanowire arrays by direct-current electrodeposition. J. Mater. Res. 2002, 17, 1711–1714.

226

Zhao, A. W.; Meng, G. W.; Zhang, L. D.; Gao, T.; Sun, S. H.; Pang, Y. T. Electrochemical synthesis of ordered CdTe nanowire arrays. Appl. Phys. A 2003, 76, 537–539.

227

Cheng, C. W.; Liu, B.; Yang, H. Y.; Zhou, W. W.; Sun, L.; Chen, R.; Yu, S. F.; Zhang, J. X.; Gong, H.; Sun, H. D.; Fan, H. J. Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires: Low-temperature hydrothermal preparation and optical properties. ACS Nano 2009, 3, 3069–3076.

228

Dloczik, L.; Engelhardt, R.; Ernst, K.; Lux-Steiner, M. C.; Konenkamp, R. Zinc sulfide columns by chemical conversion of zinc oxide. Sens. Actuat. B-Chem. 2002, 84, 33–36.

229

Dloczik, L.; Engelhardt, R.; Ernst, K.; Fiechter, S.; Sieber, I.; Konenkamp, R. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl. Phys. Lett. 2001, 78, 3687–3689.

230

Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology 2006, 17, 4695–4698.

231

Qui, J. J.; Jin, Z. G.; Liu, Z. F.; Liu, X. X.; Liu, G. Q.; Wu, W. B.; Zhang, X.; Gao, X. D. Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process. Thin Solid Films 2007, 515, 2897–2902.

232

Dawood, F.; Schaak, R. E. ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J. Am. Chem. Soc. 2009, 131, 424–425.

233

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

234

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

235

Sakano, T.; Tanaka, Y.; Nishimura, R.; Nedyalkov, N. N.; Atanasov, P. A.; Saiki, T.; Obara, M. Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition. J. Phys. D: Appl. Phys. 2008, 41, 235304.

236

Wood, A.; Giersig, M.; Mulvaney, P. Fermi level equilibration in quantum dot–metal nanojunctions. J. Phys. Chem. B 2001, 105, 8810–8815.

237

Fan, L. Y.; Yu, S. H. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: Structural, optical, photocatalytic and magnetic properties. Phys. Chem. Chem. Phys. 2009, 11, 3710–3717.

238

Pacholski, C.; Kornowski, A.; Weller, H. Site-specific photodeposition of silver on ZnO nanorods. Angew. Chem. Int. Ed. 2004, 43, 4774–4777.

239

Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 2009, 131, 12036–12037.

240

He, H.; Cai, W. P.; Lin, Y. X.; Chen, B. S. Surface decoration of ZnO nanorod arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir 2010, 26, 8925–8932.

241

Trejo, M.; Santiago, P.; Sobral, H.; Rendon, L.; Pal, U. Synthesis and growth mechanism of one-dimensional Zn/ZnO core–shell nanostructures in low-temperature hydrothermal process. Cryst. Growth Des. 2009, 9, 3024–3030.

242

Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

243

Yang, S. K.; Cai, W. P.; Liu, G. Q.; Zeng, H. B. From nanoparticles to nanoplates: Preferential oriented connection of Ag colloids during electrophoretic deposition. J. Phys. Chem. C 2009, 113, 7692–7696.

244

Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

245

Zhang, W. D. Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays. Nanotechnology 2006, 17, 1036–1040.

246

Li, X. L.; Li, C.; Zhang, Y.; Chu, D. P.; Milne, W. I.; Fan, H. J. Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT–ZnO heterostructures. Nanoscale Res. Lett. 2010, 5, 1836–1840.

247

Zhang, W. D.; Jiang, L. C.; Ye, J. S. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes. J. Phys. Chem. C 2009, 113, 16247–16253.

248

Sernelius, B. E.; Berggren, K. F.; Jin, Z. C.; Hamberg, I.; Granqvist, C. G. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 1988, 37, 10244–10248.

249

Nadarajah, A.; Word, R. C.; Meiss, J.; Konenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537.

250

Fang, T. H.; Kang, S. H. Electromechanical characteristics of ZnO: Al nanorods. J. Nanosci. Nanotechnol. 2010, 10, 405–412.

251

Look, D. C.; Claflin, B.; Alivov, Y. I.; Park, S. J. The future of ZnO light emitters. Phys. Status Solidi A 2004, 201, 2203–2212.

252

Xiang, B.; Wang, P. W.; Zhang, X. Z.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu, D. P.; Wang, D. L. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 2007, 7, 323–328.

253

Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Zapien, J. A.; Leung, Y. H.; Luo, L. B.; Wang, P. F.; Lee, C. S.; Lee, S. T. p-type ZnO nanowire arrays. Nano Lett. 2008, 8, 2591–2597.

254

Hsu, Y. F.; Xi, Y. Y.; Tam, K. H.; Djurisic, A. B.; Luo, J. M.; Ling, C. C.; Cheung, C. K.; Ng, A. M. C.; Chan, W. K.; Deng, X.; Beling, C. D.; Fung, S.; Cheah, K. W.; Fong, P. W. K.; Surya, C. C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 2008, 18, 1020–1030.

255

Lin, C. C.; Chen, H. P.; Chen, S. Y. Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions. Chem. Phys. Lett. 2005, 404, 30–34.

256

Sun, M. H.; Zhang, Q. F.; Wu, J. L. Electrical and electroluminescence properties of As-doped p-type ZnO nanorod arrays. J. Phys. D: Appl. Phys. 2007, 40, 3798–3802.

257

Thomas, M. A.; Cui, J. B. Electrochemical growth and characterization of Ag-doped ZnO nanostructures. J. Vac. Sci. Technol. B 2009, 27, 1673–1677.

258

Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; Yang, P. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 2006, 45, 420–423.

259

Cui, J.; Gibson, U. J. Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires. J. Phys. Chem. B 2005, 109, 22074–22077.

260

Cui, J. B.; Zeng, Q.; Gibson, U. J. Synthesis and magnetic properties of Co-doped ZnO nanowires. J. Appl. Phys. 2006, 99, 08M113.

261

Yuhas, B. D.; Fakra, S.; Marcus, M. A.; Yang, P. D. Probing the local coordination environment for transition metal dopants in zinc oxide nanowires. Nano Lett. 2007, 7, 905–909.

262

Liang, W. J.; Yuhas, B. D.; Yang, P. D. Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 2009, 9, 892–896.

263

Gayen, R. N.; Das, S. N.; Dalui, S.; Bhar, R.; Pal, A. K. Zinc magnesium oxide nanofibers on glass substrate by solution growth technique. J. Cryst. Growth 2008, 310, 4073–4080.

264

Fang, T. H.; Kang, S. H. Preparation and characterization of Mg-doped ZnO nanorods. J. Alloys Compd. 2010, 492, 536–542.

265

Shimpi, P.; Gao, P. X.; Goberman, D. G.; Ding, Y. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology 2009, 20, 125608.

266

Spanos, J. Photolithography applied to silicon transistor technology. J. Electrochem. Soc. 1961, 108, C176–C176.

267

Morin, S. A.; Amos, F. F.; Jin, S. Biomimetic assembly of zinc oxide nanorods onto flexible polymers. J. Am. Chem. Soc. 2007, 129, 13776–13777.

268

Boercker, J. E.; Schmidt, J. B.; Aydil, E. S. Transport limited growth of zinc oxide nanowires. Cryst. Growth Des. 2009, 9, 2783–2789.

269

Coltrin, M. E.; Hsu, J. W. P.; Scrymgeour, D. A.; Creighton, J. R.; Simmons, N. C.; Matzke, C. M. Chemical kinetics and mass transport effects in solution-based selective-area growth of ZnO nanorods. J. Cryst. Growth 2008, 310, 584–593.

270

Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G. Patterned growth of a vertically aligned zinc oxide rod array on a gallium nitride epitaxial layer by using a hydrothermal process. J. Korean Phys. Soc. 2008, 53, 227–231.

271

Masuda, Y.; Kinoshita, N.; Sato, F.; Koumoto, K. Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals. Cryst. Growth Des. 2006, 6, 75–78.

272

McCarley, R. L.; Vaidya, B.; Wei, S. Y.; Smith, A. F.; Patel, A. B.; Feng, J.; Murphy, M. C.; Soper, S. A. Resist-free patterning of surface architectures in polymer-based microanalytical devices. J. Am. Chem. Soc. 2005, 127, 842–843.

273

Yang, P.; Zou, S. L.; Yang, W. T. Positive and negative ZnO micropatterning on functionatized polymer surfaces. Small 2008, 4, 1527–1536.

274

Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117.

275

Kim, Y.; Lee, C.; Hong, Y. J.; Yi, G.; Kim, S. S.; Cheong, H. Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 2006, 89, 163128.

276

Lin, C. C.; Chen, S. Y.; Cheng, S. Y. Nucleation and growth behavior of well-aligned ZnO nanorods on organic substrates in aqueous solutions. J. Cryst. Growth 2005, 283, 141–146.

277

Volk, J.; Nagata, T.; Erdelyi, R.; Barsony, I.; Toth, A. L.; Lukacs, I. E.; Czigany, Z.; Tomimoto, H.; Shingaya, Y.; Chikyow, T. Highly uniform epitaxial ZnO nanorod arrays for nanopiezotronics. Nanoscale Res. Lett. 2009, 4, 699–704.

278

Liang, Y.; Zhen, C.; Zou, D.; Xu, D. Preparation of free-standing nanowire arrays on conductive substrates. J. Am. Chem. Soc. 2004, 126, 16338–16339.

279

Dev, A.; Chaudhuri, S. Uniform large-scale growth of micropatterned arrays of ZnO nanowires synthesized by a surfactant assisted approach. Nanotechnology 2007, 18, 175607.

280

Xu, S.; Ding, Y.; Wei, Y. G.; Fang, H.; Shen, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Patterned growth of horizontal ZnO nanowire arrays. J. Am. Chem. Soc. 2009, 131, 6670–6671.

281

Wang, Z. L.; Yang, R. S.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y. F.; Xu, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mat. Sci. Eng. R 2010, 70, 320–329.

282

Qin, Y.; Yang, R. S.; Wang, Z. L. Growth of horizonatal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 2008, 112, 18734–18736.

283

Park, Y. K.; Choi, H. S.; Kim, J. H.; Kim, J. H.; Hahn, Y. B. High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution. Nanotechnology 2011, 22, 185310.

284

Babak, N.; Chris, A. M.; Stephan, J. S.; Mark, D. V. Horizontal growth and in situ assembly of oriented zinc oxide nanowires. Appl. Phys. Lett. 2004, 85, 3244–3246.

285

Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M. Rectifying behavior of electrically aligned ZnO nanorods. Nano Lett. 2003, 3, 1097–1101.

286

Andeen, D. K., J. H.; Lang, F. F.; Goh, G. K. L.; Tripathy, S. Lateral epitaxial overgrowth of ZnO in water at 90 ℃. Adv. Funct. Mater. 2006, 16, 799–804.

287

Saifullah, M. S. M.; Subramanian, K. R. V.; Kang, D. J.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E. Sub-10 nm high-aspect-ratio patterning of ZnO using an electron beam. Adv. Mater. 2005, 17, 1757–1761.

288

Claeyssens, F.; Klini, A.; Mourka, A.; Fotakis, C. Laser patterning of Zn for ZnO nanostructure growth: Comparison between laser induced forward transfer in air and in vacuum. Thin Solid Films 2007, 515, 8529–8533.

289

Guo, X. D.; Li, R. X.; Hang, Y.; Xu, Z. Z.; Yu, B. K.; Ma, H. L.; Lu, B.; Sun, X. W. Femtosecond laser-induced periodic surface structure on ZnO. Mater. Lett. 2008, 62, 1769–1771.

290

Solak, H. H.; David, C.; Gobrecht, J.; Golovkina, V.; Cerrina, F.; Kim, S. O.; Nealey, P. F. Sub-50 nm period patterns with EUV interference lithography. Microelectron. Eng. 2003, 67-68, 56–62.

291

Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404, 53–56.

292

Kim, K. S.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv. Funct. Mater. 2010, 20, 3055–3063.

293

Wei, Y.; Wu, W.; Guo, R.; Yuan, D.; Das, S.; Wang, Z. L. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 2010, 10, 3414–3419.

294

Yuan, D. J.; Guo, R.; Wei, Y. G.; Wu, W. Z.; Ding, Y.; Wang, Z. L.; Das, S. Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation. Adv. Funct. Mater. 2010, 20, 3484–3489.

295

Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.

296

Zeng, H. B.; Xu, X. J.; Bando, Y.; Gautam, U. K.; Zhai, T. Y.; Fang, X. S.; Liu, B. D.; Golberg, D. Template deformation-tailored ZnO nanorod/nanowire arrays: Full growth control and optimization of field-emission. Adv. Funct. Mater. 2009, 19, 3165–3172.

297

Li, C.; Hong, G. S.; Wang, P. W.; Yu, D. P.; Qi, L. M. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem. Mater. 2009, 21, 891–897.

298

Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116.

299

Wang, C. H.; Wong, A. S. W.; Ho, G. W. Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 2007, 23, 11960–11963.

300

Kwon, S. J.; Park, J. H.; Park, J. G. Patterned growth of ZnO nanorods by micromolding of sol–gel-derived seed layer. Appl. Phys. Lett. 2005, 87, 133112.

301

Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373.

302

Hsu, J. W. P.; Tian, Z. R.; Simmons, N. C.; Matzke, C. M.; Voigt, J. A.; Liu, J. Directed spatial organization of zinc oxide nanorods. Nano Lett. 2005, 5, 83–86.

303

Lee, J. H.; Hon, M. H.; Chung, Y. W.; Leu, I. C. Microcontact printing of organic self-assembled monolayers for patterned growth of well-aligned ZnO nanorod arrays and their field-emission properties. J. Am. Ceram. Soc. 2009, 92, 2192–2196.

304

Hsu, J. W. P.; Tian, Z. R.; Simmons, N. C.; Matzke, C. M.; Voigt, J. A.; Liu, J. Spatial organization of ZnO nanorods on surfaces via organic templating. Proc. SPIE 2005, 5592, 158–163.

305

Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

306

Kitsomboonloha, R.; Baruah, S.; Myint, M. T. Z.; Subramanian, V.; Dutta, J. Selective growth of zinc oxide nanorods on inkjet printed seed patterns. J. Cryst. Growth 2009, 311, 2352–2358.

307

de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 2004, 16, 203–213.

308

Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Natl. Acad. Sci. USA 2008, 105, 4976–4980.

309

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

310

Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A 2006, 304, 55–61.

311

Yang, X.; Wolcottt, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

312

Jang, E. S.; Won, J. H.; Hwang, S. J.; Choy, J. H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv. Mater. 2006, 18, 3309–3312.

313

Akhavan, O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010, 4, 4174–4180.

314

Lu, F.; Cai, W. P.; Zhang, Y. G. ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 2008, 18, 1047–1056.

315

Wu, Q.; Chen, X.; Zhang, P.; Han, Y.; Chen, X.; Yan, Y.; Li, S. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Cryst. Growth Des. 2008, 8, 3010–3018.

316

Kurtz, M.; Strunk, J.; Hinrichsen, O.; Muhler, M.; Fink, K.; Meyer, B.; Woll, C. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem. Int. Ed. 2005, 44, 2790–2794.

317

Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Lin, Y. K.; Chen, L. C.; Chen, K. H. Nanostructured zinc oxide nanorods with copper nanoparticles as a microreformation catalyst. Angew. Chem. Int. Ed. 2009, 48, 7586–7590.

318

Li, C. C.; Lin, R. J.; Lin, H. P.; Lin, Y. K.; Lin, Y. G.; Chang, C. C.; Chen, L. C.; Chen, K. H. Catalytic performance of plate-type Cu/Fe nanocomposites on ZnO nanorods for oxidative steam reforming of methanol. Chem. Commun. 2011, 47, 1473–1475.

319

Lin, Y. G.; Hsu, Y. K.; Chen, S. Y.; Chen, L. C.; Chen, K. H. Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production. J. Mater. Chem. 2011, 21, 324–326.

320

Boucher, M. B.; Yi, N.; Gittleson, F.; Zugic, B.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Hydrogen production from methanol over gold supported on ZnO and CeO2 nanoshapes. J. Phys. Chem. C 2011, 115, 1261–1268.

321

Tak, Y.; Kim, H.; Lee, D.; Yong, K. Type-Ⅱ CdS nanoparticle–ZnO nanowire heterostructure arrays fabricated by a solution process: Enhanced photocatalytic activity. Chem. Commun. 2008, 4585–4587.

322

Wang, W. W.; Zhu, Y. J.; Yang, L. X. ZnO–SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 2007, 17, 59–64.

323

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

324

Li, G. R.; Hu, T.; Pan, G. L.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. Morphology–function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C 2008, 112, 11859–11864.

325

Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces. Langmuir 1996, 12, 2125–2127.

326

Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 2004, 126, 62–63.

327

Sun, R. D.; Nakajima, A.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 2001, 105, 1984–1990.

328

Ding, Y.; Xu, S.; Zhang, Y.; Wang, A. C.; Wang, M. H.; Xiu, Y. H.; Wong, C. P.; Wang, Z. L. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology 2008, 19, 355708.

329

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO Nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

330

Badre, C.; Pauporté, T. Nanostructured ZnO-based surface with reversible electrochemically adjustable wettability. Adv. Mater. 2009, 21, 697–701.

331

Guo, M.; Diao, P.; Cai, S. M. Highly hydrophilic and superhydrophobic ZnO nanorod array films. Thin Solid Films 2007, 515, 7162–7166.

332

Xu, N. S.; Huq, S. E. Novel cold cathode materials and applications. Mat. Sci. Eng. R 2005, 48, 47–189.

333

Dev, A.; Panda, S. K.; Kar, S.; Chakrabarti, S.; Chaudhuri, S. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol–gel-derived ZnO thin films. J. Phys. Chem. B 2006, 110, 14266–14272.

334

Hung, C. H.; Whang, W. T. Low-temperature solution approach toward highly aligned ZnO nanotip arrays. J. Cryst. Growth 2004, 268, 242–248.

335

Ahsanulhaq, Q.; Kim, J. H.; Hahn, Y. B. Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology 2007, 18, 485307.

336

Cui, J. B.; Daghlian, C. P.; Gibson, U. J.; Pusche, R.; Geithner, P.; Ley, L. Low-temperature growth and field emission of ZnO nanowire arrays. J. Appl. Phys. 2005, 97, 044315.

337

Wei, A.; Sun, X. W.; Xu, C. X.; Dong, Z. L.; Yu, M. B.; Huang, W. Stable field emission from hydrothermally grown ZnO nanotubes. Appl. Phys. Lett. 2006, 88, 213102.

338

Xu, C. X.; Sun, X. W. Field emission from zinc oxide nanopins. Appl. Phys. Lett. 2003, 83, 3806–3808.

339

Cao, B. Q.; Teng, X. M.; Heo, S. H.; Li, Y.; Cho, S. O.; Li, G. H.; Cai, W. P. Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties. J. Phys. Chem. C 2007, 111, 2470–2476.

340

Kee, C. S.; Ko, D. K.; Lee, J. Photonic band gaps of two-dimensional ZnO nanorod photonic crystals. J. Phys. D: Appl. Phys. 2005, 38, 3850–3853.

341

Matsuu, M.; Shimada, S.; Masuya, K.; Hirano, S.; Kuwabara, M. Formation of periodically ordered zinc oxide nanopillars in aqueous solution: An approach to photonic crystals at visible wavelengths. Adv. Mater. 2006, 18, 1617–1621.

342

Hirano, S. Oxide nanowire arrays and two-dimensional photonic crystals for control of light. J. Ceram. Soc. Jpn. 2007, 115, 92–100.

343

Cui, J. B.; Gibson, U. Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures. Nanotechnology 2007, 18, 155302.

344

Cui, J. B. Structural and optical properties of periodically ordered ZnO nanowires. Sci. China Ser. E 2009, 52, 313–317.

345

Volk, J.; Hakansson, A.; Miyazaki, H. T.; Nagata, T.; Shimizu, J.; Chikyow, T. Fully engineered homoepitaxial zinc oxide nanopillar array for near-surface light wave manipulation. Appl. Phys. Lett. 2008, 92, 183114.

346

Alivov, Y. I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev, A. K.; Chukichev, M. V.; Bagnall, D. M. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 2003, 83, 4719–4721.

347

Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J.; Shim, H. W.; Suh, E. K.; Lee, C. J. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 2002, 363, 134–138.

348

Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurisic, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871.

349

Kim, Y. J.; Shang, H. M.; Cao, G. Z. Growth and characterization of [001] ZnO nanorod array on ITO substrate with electric field assisted nucleation. J. Sol-Gel Sci. Technol. 2006, 38, 79–84.

350

Zhou, H.; Chen, X. M.; Wu, G. H.; Gao, F.; Qin, N.; Bao, D. H. Significantly enhanced red photoluminescence properties of nanocomposite films composed of a ferroelectric Bi3.6Eu0.4Ti3O12 matrix and highly c-axis-oriented ZnO nanorods on Si substrates prepared by a hybrid chemical solution method. J. Am. Chem. Soc. 2010, 132, 1790–1791.

351

Xiang, S.; Wang, Z. L. Piezoelectric thin films and nanowires: Synthesis and characterization. MA Thesis, Georgia Institute of Technology, Atlanta, August 2011.

352

Mahalingam, T.; Lee, K. M.; Park, K. H.; Lee, S.; Ahn, Y.; Park, J. Y.; Koh, K. H. Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods. Nanotechnology 2007, 18, 035606.

353

Ho, G. W.; Wong, A. S. W. One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires. Appl. Phys. A 2007, 86, 457–462.

354

Lin, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103.

355

Lee, S. J.; Park, S. K.; Park, C. R.; Lee, J. Y.; Park, J.; Do, Y. R. Spatially separated ZnO nanopillar arrays on Pt/Si substrates prepared by electrochemical deposition. J. Phys. Chem. C 2007, 111, 11793–11801.

356

Richters, J. P.; Voss, T.; Wischmeier, L.; Ruckmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103.

357

Varshni, Y. P. Temperature dependence of energy gap in semiconductors. Physica 1967, 34, 149–154.

358

Sakai, K.; Noguchi, K.; Fukuyama, A.; Ikari, T.; Okada, T. Low-temperature photoluminescence of nanostructured ZnO crystal synthesized by pulsed-laser ablation. Jpn. J. Appl. Phys. 2009, 48, 085001.

359

Su, F. H.; Wang, W. J.; Ding, K.; Li, G. H.; Liu, Y. F.; Joly, A. G.; Chen, W. Pressure dependence of the near-band-edge photoluminescence from ZnO microrods at low temperature. J. Phys. Chem. Solids 2006, 67, 2376–2381.

360

Fang, F.; Zhao, D. X.; Li, B. H.; Zhang, Z. Z.; Shen, D. Z.; Wang, X. H. Bending-induced enhancement of longitudinal optical phonon scattering in ZnO nanowires. J. Phys. Chem. C 2010, 114, 12477–12480.

361

Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; Room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.

362

Qiu, Z.; Wong, K. S.; Wu, M.; Lin, W.; Xu, H. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation. Appl. Phys. Lett. 2004, 84, 2739–2741.

363

Johnson, J. C.; Yan, H. Q.; Schaller, R. D.; Petersen, P. B.; Yang, P. D.; Saykally, R. J. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2002, 2, 279–283.

364

Voss, T.; Kudyk, I.; Wischmeier, L.; Gutowski, J. Nonlinear optics with ZnO nanowires. Phys. Status Solidi B 2009, 246, 311–314.

365

Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 2011, 6, 506-510.

366

Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Myoung, J. M. Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 2006, 88, 202105.

367

Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Lee, S. W.; Myoung, J. M. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small 2007, 3, 568–572.

368

Reddy, N. K.; Ahsanulhaq, Q.; Hahn, Y. B. Fabrication of zinc oxide nanorods based heterojunction devices using simple and economic chemical solution method. Appl. Phys. Lett. 2008, 93, 083124.

369

Chen, C. H.; Chang, S. J.; Chang, S. P.; Li, M. J.; Chen, I. C.; Hsueh, T. J.; Hsu, C. L. Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Appl. Phys. Lett. 2009, 95, 223101.

370

Xu, S.; Xu, C.; Liu, Y.; Hu, Y.; Yang, R.; Yang, Q.; Ryou, J. H.; Kim, H. J.; Lochner, Z.; Choi, S.; Dupuis, R.; Wang, Z. L. Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 2010, 22, 4749–4753.

371

Alivov, Y. I.; Van Nostrand, J. E.; Look, D. C.; Chukichev, M. V.; Ataev, B. M. Observation of 430 nm electro-luminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83, 2943–2945.

372

Bulashevich, K. A.; Evstratov, I. Y.; Karpov, S. Y. Hybrid ZnO/Ⅲ-nitride light-emitting diodes: Modelling analysis of operation. Phys. Status Solidi A 2007, 204, 241–245.

373

Titkov, I. E.; Zubrilov, A. S.; Delimova, L. A.; Mashovets, D. V.; Liniichuk, I. A.; Grekhov, I. V. White electro-luminescence from ZnO/GaN structures. Semiconductors 2007, 41, 564–569.

374

Kishwar, S.; ul Hasan, K.; Tzamalis, G.; Nur, O.; Willander, M.; Kwack, H. S.; Dang, D. L. S. Electro-optical and cathodoluminescence properties of low temperature grown ZnO nanorods/p-GaN white light emitting diodes. Phys. Status Solidi A 2010, 207, 67–72.

375

Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.; Okada, T. Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 2009, 94, 33–38.

376

Xu, H. Y.; Liu, Y. C.; Liu, Y. X.; Xu, C. S.; Shao, C. L.; Mu, R. Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl. Phys. B 2005, 80, 871–874.

377

Liu, H. F.; Hu, G. X.; Gong, H.; Zang, K. Y.; Chua, S. J. Effects of oxygen on low-temperature growth and band alignment of ZnO/GaN heterostructures. J. Vac. Sci. Technol. A 2008, 26, 1462–1468.

378

Aguilar, C. A.; Haight, R.; Mavrokefalos, A.; Korgel, B. A.; Chen, S. C. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy. ACS Nano 2009, 3, 3057–3062.

379

Ng, A. M. C.; Xi, Y. Y.; Hsu, Y. F.; Djurisic, A. B.; Chan, W. K.; Gwo, S.; Tam, H. L.; Cheah, K. W.; Fong, P. W. K.; Lui, H. F.; Surya, C. GaN/ZnO nanorod light emitting diodes with different emission spectra. Nanotechnology 2009, 20, 445201.

380

Alivov, Y. I.; Ozgur, U.; Dogan, S.; Liu, C.; Moon, Y.; Gu, X.; Avrutin, V.; Fu, Y.; Morkoc, H. Forward-current electroluminescence from GaN/ZnO double heterostructure diode. Solid-State Electron. 2005, 49, 1693–1696.

381

Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.

382

Bayram, C.; Teherani, F. H.; Rogers, D. J.; Razeghi, M. A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN. Appl. Phys. Lett. 2008, 93, 081111.

383

Choi, H. W.; Jeon, C. W.; Dawson, M. D.; Edwards, P. R.; Martin, R. W.; Tripathy, S. Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes. J. Appl. Phys. 2003, 93, 5978–5982.

384

Konenkamp, R.; Word, R. C.; Schlegel, C. Vertical nanowire light-emitting diode. Appl. Phys. Lett. 2004, 85, 6004–6006.

385

Konenkamp, R.; Word, R. C.; Godinez, M. Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 2005, 5, 2005–2008.

386

Bolink, H. J.; Coronado, E.; Repetto, D.; Sessolo, M. Air stable hybrid organic–inorganic light emitting diodes using ZnO as the cathode. Appl. Phys. Lett. 2007, 91, 223501.

387

Konenkamp, R.; Nadarajah, A.; Word, R. C.; Meiss, J.; Engelhardt, R. ZnO nanowires for LED and field-emission displays. J. Soc. Inf. Display 2008, 16, 609–613.

388

Willander, M.; Lozovik, Y. E.; Wadeasa, A.; Nur, O.; Semenov, A. G.; Vonorova, N. S. Light emission from different ZnO junctions and nanostructures. Phys. Status Solidi A 2009, 206, 853–859.

389

Wadeasa, A.; Beegum, S. L.; Raja, S.; Nur, O.; Willander, M. The demonstration of hybrid n-ZnO nanorod/p-polymer heterojunction light emitting diodes on glass substrates. Appl. Phys. A 2009, 95, 807–812.

390

Guo, H. G.; Zhou, J. Z.; Lin, Z. G. ZnO nanorod light-emitting diodes fabricated by electrochemical approaches. Electrochem. Commun. 2008, 10, 146–150.

391

Liu, J.; Ahn, Y. H.; Park, J. Y.; Koh, K. H.; Lee, S. Hybrid light-emitting diodes based on flexible sheets of mass-produced ZnO nanowires. Nanotechnology 2009, 20, 445203.

392

Sun, X. W.; Huang, J. Z.; Wang, J. X.; Xu, Z. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 2008, 8, 1219–1223.

393

Round, H. J. A note on carborundum. Electrical World 1907, 49, 309.

394

Livingstone, A. W.; Turvey, K.; Allen, J. W. Electroluminescence in forward-biased zinc selenide Schottky diodes. Solid-State Electron. 1973, 16, 351–356.

395

Allen, J. W.; Livingstone, A. W.; Turvey, K. Electroluminescence in reverse-biased zinc selenide Schottky diodes. Solid-State Electron. 1972, 15, 1363–1369.

396

Lazarouk, S.; Jaguiro, P.; Katsouba, S.; Masini, G.; LaMonica, S.; Maiello, G.; Ferrari, A. Stable electroluminescence from reverse biased n-type porous silicon-aluminum Schottky junction device. Appl. Phys. Lett. 1996, 68, 2108–2110.

397

Steckl, A. J.; Garter, M.; Birkhahn, R.; Scofield, J. Green electroluminescence from Er-doped GaN Schottky barrier diodes. Appl. Phys. Lett. 1998, 73, 2450–2452.

398

Wang, Y. X.; Zhang, Q. F.; Sun, H.; Chang, Y. L.; Wu, J. L. Fabrication of ZnO nanowire-based diodes and their light-emitting properties. Acta Phys. Sin. -Chin. Ed. 2008, 57, 1141–1144.

399

Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. White-light-emitting diode based on ZnO nanotubes. J. Phys. Chem. C 2009, 113, 12546–12550.

400

Bano, N.; Hussain, I.; Nur, O.; Willander, M.; Kwack, H. S.; Dang, D. L. S. Study of Au/ZnO nanorods Schottky light-emitting diodes grown by low-temperature aqueous chemical method. Appl. Phys. A 2010, 100, 467–472.

401

Tan, S. T.; Sun, X. W.; Zhao, J. L.; Iwan, S.; Cen, Z. H.; Chen, T. P.; Ye, J. D.; Lo, G. Q.; Kwong, D. L.; Teo, K. L. Ultraviolet and visible electroluminescence from n-ZnO/SiOx/(n, p)-Si heterostructured light-emitting diodes. Appl. Phys. Lett. 2008, 93, 013506.

402

Benisty, H.; De Neve, H.; Weisbuch, C. Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends. IEEE J. Quantum. Elect. 1998, 34, 1612–1631.

403

Schnitzer, I.; Yablonovitch, E.; Caneau, C.; Gmitter, T. J.; Scherer, A. 30% external quantum efficiency from surface textured, thin-film light-emitting-diodes. Appl. Phys. Lett. 1993, 63, 2174–2176.

404

Fujii, T.; Gao, Y.; Sharma, R.; Hu, E. L.; DenBaars, S. P.; Nakamura, S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 2004, 84, 855–857.

405

Kim, H.; Kim, K. K.; Choi, K. K.; Kim, H.; Song, J. O.; Cho, J.; Baik, K. H.; Sone, C.; Park, Y.; Seong, T. Y. Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Appl. Phys. Lett. 2007, 91, 023510.

406

Murai, A.; Thompson, D. B.; Masui, H.; Fellows, N.; Mishra, U. K.; Nakamura, S.; DenBaars, S. P. Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding. Appl. Phys. Lett. 2006, 89, 171116.

407

Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274–1278.

408

Barnes, W. L. Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices. J. Lightwave Technol. 1999, 17, 2170–2182.

409

Chen, L.; Nurmikko, A. V. Fabrication and performance of efficient blue light emitting Ⅲ-nitride photonic crystals. Appl. Phys. Lett. 2004, 85, 3663–3665.

410

Oder, T. N.; Kim, K. H.; Lin, J. Y.; Jiang, H. X. Ⅲ-Nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 2004, 84, 466–468.

411
Lu, Y.; Zhong, J.; Zhu, J.; Saraf, G.; Chen, H. H.; Duan, Z. Q.; Reyes, P.; Shen, H.; Mackie, D. M.; Wittkstruck, R. H.; Ballato, A. Novel devices using multifunctional ZnO and its nanostructures. http://dodreports.com/pdf/ada505710.pdf.
412

Kim, K. K.; Lee, S. D.; Kim, H.; Park, J. C.; Lee, S. N.; Park, Y.; Park, S. J.; Kim, S. W. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys. Lett. 2009, 94, 071118.

413

An, S. J.; Chae, J. H.; Yi, G. C.; Park, G. H. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett. 2008, 92, 121108.

414

Zhong, J.; Chen, H.; Saraf, G.; Lu, Y.; Choi, C. K.; Song, J. J.; Mackie, D. M.; Shen, H. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys. Lett. 2007, 90, 203515.

415

Lai, E.; Kim, W.; Yang, P. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.

416

Bao, J. M.; Zimmler, M. A.; Capasso, F.; Wang, X. W.; Ren, Z. F. Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722.

417

Johnson, J. C.; Yan, H. Q.; Yang, P. D.; Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 2003, 107, 8816–8828.

418

Kim, K. S.; Kim, S. M.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes. Adv. Funct. Mater. 2010, 20, 1076–1082.

419

Park, S. H.; Kim, S. H.; Han, S. W. Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications. Nanotechnology 2007, 18, 055608.

420

Sun, X. W.; Wang, J. X. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett. 2008, 8, 1884–1889.

421

Granqvist, C. G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262.

422

Bonhote, P.; Gogniat, E.; Campus, F.; Walder, L.; Gratzel, M. Nanocrystalline electrochromic displays. Displays 1999, 20, 137–144.

423

Hu, A. Z.; Wu, F.; Liu, J. P.; Jiang, J.; Ding, R. M.; Li, X.; Cheng, C. X.; Zhu, Z. H.; Huang, X. T. Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance. J. Alloys Compd. 2010, 507, 261–266.

424

Li, M.; Zhang, H. Y.; Guo, C. X.; Xu, J. B.; Fu, X. J. The research on suspended ZnO nanowire field-effect transistor. Chin. Phys. B 2009, 18, 1594–1597.

425

Sun, B. Q.; Sirringhaus, H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J. Am. Chem. Soc. 2006, 128, 16231–16237.

426

Ju, S. Y.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

427

Hsu, C. L.; Tsai, T. Y. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates. J. Electrochem. Soc. 2011, 158, K20–K23.

428

Ko, S. H.; Park, I.; Pan, H.; Misra, N.; Rogers, M. S.; Grigoropoulos, C. P.; Pisano, A. P. ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Appl. Phys. Lett. 2008, 92, 154102.

429

Gao, P. X.; Liu, J.; Buchine, B. A.; Weintraub, B.; Wang, Z. L.; Lee, J. L. Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 2007, 91, 142108.

430

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

431

Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee, Y. C.; Tan, O. K.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 2006, 17, 4995–4998.

432

Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465–15467.

433

Gao, P.; Wang, Z. Z.; Liu, K. H.; Xu, Z.; Wang, W. L.; Bai, X. D.; Wang, E. G. Photoconducting response on bending of individual ZnO nanowires. J. Mater. Chem. 2009, 19, 1002–1005.

434

Wei, A.; Sun, X. W.; Wang, J. X.; Lei, Y.; Cai, X. P.; Li, C. M.; Dong, Z. L.; Huang, W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 2006, 89, 123902.

435

Liu, N. S.; Fang, G. J.; Zeng, W.; Long, H.; Yuan, L. Y.; Zhao, X. Z. Novel ZnO nanorod flexible strain sensor and strain driving transistor with an ultrahigh 107 scale "On"-"Off" ratio fabricated by a single-step hydrothermal reaction. J. Phys. Chem. C 2011, 115, 570–575.

436

Kwon, S. S.; Hong, W. K.; Jo, G.; Maeng, J.; Kim, T. W.; Song, S.; Lee, T. Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates. Adv. Mater. 2008, 20, 4557–4562.

437

Wei, T. Y.; Huang, C. T.; Hansen, B. J.; Lin, Y. F.; Chen, L. J.; Lu, S. Y.; Wang, Z. L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl. Phys. Lett. 2010, 96, 013508.

438

Al-Hilli, S. M.; Willander, M.; Ost, A.; Stralfors, P. ZnO nanorods as an intracellular sensor for pH measurements. J. Appl. Phys. 2007, 102, 084304.

439

Zhou, J.; Xu, N. S.; Wang, Z. L. Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 2006, 18, 2432–2435.

440

Li, Z.; Yang, R. S.; Yu, M.; Bai, F.; Li, C.; Wang, Z. L. Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 2008, 112, 20114–20117.

441

Gonzalez-Valls, I.; Lira-Cantu, M. Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2009, 2, 19–34.

442

Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8, 1501–1505.

443

O'Regan, B.; Gratzel, M. A Low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

444

Pradhan, B.; Batabyal, S. K.; Pal, A. J. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 769–773.

445

Baxter, J. B.; Aydil, E. S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86, 053114.

446

Beermann, N.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A. Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 2000, 147, 2456–2461.

447

Baxter, J. B.; Schmuttenmaer, C. A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229–25239.

448

Martinson, A. B. F.; McGarrah, J. E.; Parpia, M. O. K.; Hupp, J. T. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2006, 8, 4655–4659.

449

Baxter, J. B.; Walker, A. M.; van Ommering, K.; Aydil, E. S. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 2006, 17, S304–S312.

450

Hsu, Y. F.; Xi, Y. Y.; Djurisic, A. B.; Chan, W. K. ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition. Appl. Phys. Lett. 2008, 92, 133507.

451

Jiang, C. Y.; Sun, X. W.; Tan, K. W.; Lo, G. Q.; Kyaw, A. K. K.; Kwong, D. L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl. Phys. Lett. 2008, 92, 143101.

452

Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 2007, 7, 1793–1798.

453

Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

454

Jensen, R. A.; Van Ryswyk, H.; She, C. X.; Szarko, J. M.; Chen, L. X.; Hupp, J. T. Dye-sensitized solar cells: Sensitizer-dependent injection into ZnO nanotube electrodes. Langmuir 2010, 26, 1401–1404.

455

Yodyingyong, S.; Zhang, Q. F.; Park, K.; Dandeneau, C. S.; Zhou, X. Y.; Triampo, D.; Cao, G. Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl. Phys. Lett. 2010, 96, 073115.

456

Ku, C. H.; Wu, J. J. Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 2007, 18, 505706.

457

Cheng, K.; Cheng, G.; Wang, S. J.; Fu, D. W.; Zou, B. S.; Du, Z. L. Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure. Mater. Chem. Phys. 2010, 124, 1239–1242.

458

Ku, C. H.; Wua, J. J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Appl. Phys. Lett. 2007, 91, 093117.

459

Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90, 263501.

460

Hosono, E.; Fujihara, S.; Honna, I.; Zhou, H. S. The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells. Adv. Mater. 2005, 17, 2091–2094.

461

Xu, F.; Dai, M.; Lu, Y. N.; Sun, L. T. Hierarchical ZnO nanowire-nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 2776–2782.

462

Fu, Y. S.; Sun, J.; Xie, Y.; Liu, J.; Wang, H. L.; Du, X. W. ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells. Mater. Sci. Eng., B 2010, 166, 196–202.

463

Gao, Y. F.; Nagai, M. Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells. Langmuir 2006, 22, 3936–3940.

464

Zou, D. C.; Wang, D.; Chu, Z. Z.; Lv, Z. B.; Fan, X. Fiber-shaped flexible solar cells. Coord. Chem. Rev. 2010, 254, 1169–1178.

465

Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. 2007, 90, 213109.

466

Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

467

Tak, Y.; Kim, H.; Lee, D.; Yong, K. Type-Ⅱ CdS nanoparticle–ZnO nanowire heterostructure arrays fabricated by a solution process: Enhanced photocatalytic activity. Chem. Commun. 2008, 4585–4587.

468

Lee, M.; Yang, R.; Li, C.; Wang, Z. L. Nanowire–quantum dot hybridized cell for harvesting sound and solar energies. J. Phys. Chem. Lett. 2010, 1, 2929–2935.

469

Tena-Zaera, R.; Katty, A.; Bastide, S.; Levy-Clement, C. Annealing effects on the physical properties of electrodeposited ZnO/CdSe core–shell nanowire arrays. Chem. Mater. 2007, 19, 1626–1632.

470

Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology 2009, 20, 155707.

471

Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.

472

Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015.

473

Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19, 5945–5951.

474

Consonni, V.; Rey, G.; Bonaime, J.; Karst, N.; Doisneau, B.; Roussel, H.; Renet, S.; Bellet, D. Synthesis and physical properties of ZnO/CdTe core shell nanowires grown by low-cost deposition methods. Appl. Phys. Lett. 2011, 98, 111906.

475

Sun, X. W.; Chen, J.; Song, J. L.; Zhao, D. W.; Deng, W. Q.; Lei, W. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode. Opt. Express 2010, 18, 1296–1301.

476

Cui, J.; Gibson, U. J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C 2010, 114, 6408–6412.

477

Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G.; Bastide, S.; Lévy-Clément, C. Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. C.R. Chim. 2006, 9, 717-729.

478

Zhao, Q. D.; Xie, T. F.; Peng, L. L.; Lin, Y. H.; Wang, P.; Peng, L.; Wang, D. J. Size- and orientation-dependent photovoltaic properties of ZnO nanorods. J. Phys. Chem. C 2007, 111, 17136–17145.

479

Takanezawa, K.; Tajima, K.; Hashimoto, K. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Appl. Phys. Lett. 2008, 93, 063308.

480

Olson, D. C.; Piris, J.; Collins, R. T.; Shaheen, S. E.; Ginley, D. S. Hybrid photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid Films 2006, 496, 26–29.

481

Unalan, H. E.; Hiralal, P.; Kuo, D.; Parekh, B.; Amaratunga, G.; Chhowalla, M. Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 2008, 18, 5909–5912.

482

Liu, J.; Wang, S.; Bian, Z.; Shan, M.; Huang, C. Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Appl. Phys. Lett. 2009, 94, 173107.

483

Takanezawa, K.; Hirota, K.; Wei, Q. S.; Tajima, K.; Hashimoto, K. Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J. Phys. Chem. C 2007, 111, 7218–7223.

484

Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.; Shelton, S. W.; Frechet, J. J. M.; Yang, P. D. Oligo- and polythiophene/ZnO hybrid nanowire solar cells. Nano Lett. 2010, 10, 334–340.

485

Ravirajan, P.; Peiró, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 2006, 110, 7635–7639.

486

Bi, D. Q.; Wu, F.; Qu, Q. Y.; Yue, W. J.; Cui, Q.; Shen, W.; Chen, R. Q.; Liu, C. W.; Qiu, Z. L.; Wang, M. T. Device performance related to amphiphilic modification at charge separation interface in hybrid solar cells with vertically aligned ZnO nanorod arrays. J. Phys. Chem. C 2011, 115, 3745–3752.

487

Olson, D. C.; Lee, Y. J.; White, M. S.; Kopidakis, N.; Shaheen, S. E.; Ginley, D. S.; Voigt, J. A.; Hsu, J. W. P. Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices. J. Phys. Chem. C 2007, 111, 16640–16645.

488

Olson, D. C.; Shaheen, S. E.; Collins, R. T.; Ginley, D. S. The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J. Phys. Chem. C 2007, 111, 16670–16678.

489

Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O'Brien, P.; Bradley, D. D. C.; Nelson, J.; Durrant, J. R. Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J. Mater. Chem. 2006, 16, 2088–2096.

490

Lin, Y. Y.; Chen, C. W.; Chu, T. H.; Su, W. F.; Lin, C. C.; Ku, C. H.; Wu, J. J.; Chen, C. H. Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes. J. Mater. Chem. 2007, 17, 4571–4576.

491

Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451–18456.

492

Liu, J. P.; Qu, S. C.; Xu, Y.; Chen, Y. H.; Zeng, X. B.; Wang, Z. J.; Zhou, H. Y.; Wang, Z. G. Photovoltaic and electroluminescence characters in hybrid ZnO and conjugated polymer bulk heterojunction devices. Chin. Phys. Lett. 2007, 24, 1350–1353.

493

Wang, Z. L. Self-powered nanotech—Nanosize machines need still tinier power plants. Sci. Am. 2008, 298, 82–87.

494

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.

495

Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X.; Zhu, J. Nanowire-based high performance "micro fuel cell": One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

496

Hudak, N. S.; Amatucci, G. G. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Phys. 2008, 103, 101301.

497

Choi, M. Y.; Choi, D.; Jin, M. J.; Kim, I.; Kim, S. H.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 2009, 21, 2185–2189.

498

Lei, Y.; Jiao, Z.; Wu, M. H.; Wilde, G. Ordered arrays of nanostructures and applications in high-efficient nanogenerators. Adv. Eng. Mater. 2007, 9, 343–348.

499

Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl. Phys. Lett. 2007, 90, 063110.

500

Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W. Generation of electricity in GaN nanorods induced by piezoelectric effect. Erratum. Appl. Phys. Lett. 2007, 90, 179901.

501

Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766–4771.

502

Huang, C. T.; Song, J. H.; Tsai, C. M.; Lee, W. F.; Lien, D. H.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. Single-InN-nanowire nanogenerator with up to 1 V output voltage. Adv. Mater. 2010, 22, 4008–4013.

503

Wang, X. B.; Song, J. H.; Zhang, F.; He, C. Y.; Hu, Z.; Wang, Z. L. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials. Adv. Mater. 2010, 22, 2155–2158.

504

Lin, Y. F.; Song, J.; Ding, Y.; Lu, S. Y.; Wang, Z. L. Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 2008, 20, 3127–3130.

505

Lu, M. Y.; Song, J. H.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L. ZnO–ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 2009, 3, 357–362.

506

Chen, X.; Xu, S.; Yao, N.; Shi, Y. 1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010, 10, 2133–2137.

507

Qi, Y.; Jafferis, N. T.; Lyons, K.; Lee, C. M.; Ahmad, H.; McAlpine, M. C. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 2010, 10, 524–528.

508

Qi, Y.; McAlpine, M. C. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 2010, 3, 1275–1285.

509

Feng, X.; Yang, B. D.; Liu, Y. M.; Wang, Y.; Dagdeviren, C.; Liu, Z. J.; Carlson, A.; Li, J. Y.; Huang, Y. G.; Rogers, J. A. Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 2011, 5, 3326–3332.

510

Lee, M. H.; Javey, A. Power surfing on waves. Nature 2011, 472, 304–305.

511

Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011, 11, 1331–1336.

512

Xu, S. Y.; Shi, Y. Power generation from piezoelectric lead zirconate titanate nanotubes. J. Phys. D: Appl. Phys. 2009, 42, 085301.

513

Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.

514

Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M. F. Voltage generation from individual BaTiO3 nanowires under periodic tensile mechanical load. Nano Lett. 2007, 7, 2966–2969.

515

Ke, T. Y.; Chen, H. A.; Sheu, H. S.; Yeh, J. W.; Lin, H. N.; Lee, C. Y.; Chiu, H. T. Sodium niobate nanowire and its piezoelectricity. J. Phys. Chem. C 2008, 112, 8827–8831.

516

Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

517

Hansen, B. J.; Liu, Y.; Yang, R. S.; Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 2010, 4, 3647–3652.

518

Service, R. F. Nanogenerators tap waste energy to power ultrasmall electronics. Science 2010, 328, 304–305.

519

Wang, Z. L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. MRS Bull. 2007, 32, 109–116.

520

Zhao, M. H.; Wang, Z. L.; Mao, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 2004, 4, 587–590.

521

Mitrushchenkov, A.; Linguerri, R.; Charnbaud, G. Piezoelectric properties of AlN, ZnO, and HgxZn1-xO nanowires by first-principles calculations. J. Phys. Chem. C 2009, 113, 6883–6886.

522

Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Piezoelectricity in ZnO nanowires: A first-principles study. Appl. Phys. Lett. 2006, 89, 223111.

523

Xin, J.; Zheng, Y. Q.; Shi, E. W. Piezoelectricity of zinc-blende and wurtzite structure binary compounds. Appl. Phys. Lett. 2007, 91, 112902.

524

Agrawal, R.; Espinosa, H. D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 2011, 11, 786–790.

525

Gao, Y.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.

526

Scrymgeour, D. A.; Hsu, J. W. P. Correlated piezoelectric and electrical properties in individual ZnO nanorods. Nano Lett. 2008, 8, 2204–2209.

527

Gao, Y.; Wang, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009, 9, 1103–1110.

528

Mora-Sero, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Levy-Clement, C. Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl. Phys. Lett. 2006, 89, 203117.

529

Tong, H.; Wang, B. L.; Ou-Yang, Z. C. Electric potential generated in ZnO nanowire due to piezoelectric effect. Thin Solid Films 2008, 516, 2708–2710.

530

Allen, M. W.; Alkaisi, M. M.; Durbin, S. M. Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 2006, 89, 103520.

531

Coppa, B. J.; Davis, R. F.; Nemanich, R. J. Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000). Appl. Phys. Lett. 2003, 82, 400–402.

532

Wenckstern, H. V.; Kaidashev, E. M.; Lorenz, M.; Hochmuth, H.; Biehne, G.; Lenzner, J.; Gottschalch, V.; Pickenhain, R.; Grundmann, M. Lateral homogeneity of Schottky contacts on n-type ZnO. Appl. Phys. Lett. 2004, 84, 79–81.

533

Kim, S. H.; Kim, H. K.; Seong, T. Y. Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO. Appl. Phys. Lett. 2005, 86, 112101.

534

Rakhshani, A. E. Schottky diodes on ZnO rods grown homoepitaxially by successive chemical solution deposition. Semicond. Sci. Technol. 2008, 23, 075037.

535

Periasamy, C.; Chakrabarti, P. Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator. J. Appl. Phys. 2011, 109, 054306.

536

Song, J. H.; Xie, H. Z.; Wu, W. Z.; Joseph, V. R.; Wu, C. F. J.; Wang, Z. L. Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Res. 2010, 3, 613–619.

537

Shao, Z. Z.; Wen, L. Y.; Wu, D. M.; Zhang, X. A.; Chang, S. L.; Qin, S. Q. AFM analysis of piezoelectric nanogenerator based on n+-diamond/n-ZnO heterojunction. Appl. Surf. Sci. 2011, 257, 4919–4922.

538

Riaz, M.; Fulati, A.; Amin, G.; Alvi, N. H.; Nur, O.; Willander, M. Buckling and elastic stability of vertical ZnO nanotubes and nanorods. J. Appl. Phys. 2009, 106, 034309.

539

Liu, J.; Fei, P.; Zhou, J.; Tummala, R.; Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 2008, 92, 173105.

540

Thundat, T. Flexible approach pays off. Nat. Nanotechnol. 2008, 3, 133–134.

541

Zhang, J.; Li, M. K.; Yu, L. Y.; Liu, L. L.; Zhang, H.; Yang, Z. Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Appl. Phys. A 2009, 97, 869–876.

542

Park, H. K.; Lee, K. Y.; Seo, J. S.; Jeong, J. A.; Kim, H. K.; Choi, D.; Kim, S. W. Charge-generating mode control in high-performance transparent flexible piezoelectric nanogenerators. Adv. Funct. Mater. 2011, 21, 1187–1193.

543

Choi, D.; Choi, M. Y.; Shin, H. J.; Yoon, S. M.; Seo, J. S.; Choi, J. Y.; Lee, S. Y.; Kim, J. M.; Kim, S. W. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J. Phys. Chem. C 2010, 114, 1379–1384.

544

Choi, D.; Choi, M. Y.; Choi, W. M.; Shin, H. J.; Park, H. K.; Seo, J. S.; Park, J.; Yoon, S. M.; Chae, S. J.; Lee, Y. H.; Kim, S. W.; Choi, J. Y.; Lee, S. Y.; Kim, J. M. Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 2010, 22, 2187–2192.

545

Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M.; Choi, J. Y.; Lee, Y. H. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 2010, 132, 15603–15609.

546

Kumar, B.; Lee, K. Y.; Park, H. K.; Chae, S. J.; Lee, Y. H.; Kim, S. W. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 2011, 5, 4197–4204.

547

Yang, R. S.; Qin, Y.; Li, C.; Dai, L. M.; Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 2009, 94, 022905.

548

Yang, R.; Qin, Y.; Li, C.; Zhu, G.; Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 2009, 9, 1201–1205.

549

Li, Z.; Zhu, G.; Yang, R. S.; Wang, A. C.; Wang, Z. L. Muscle-driven in vivo nanogenerator. Adv. Mater. 2010, 22, 2534–2537.

550

Zhu, G.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

551

Agrawal, R.; Peng, B.; Espinosa, H. D. Experimental–computational investigation of ZnO nanowires strength and fracture. Nano Lett. 2009, 9, 4177–4183.

552

Yu, A. F.; Li, H. Y.; Tang, H. Y.; Liu, T. J.; Jiang, P.; Wang, Z. L. Vertically integrated nanogenerator based on ZnO nanowire arrays. Phys. Status Solidi R 2011, 5, 162–164.

553

van der Heyden, F. H. J.; Bonthuis, D. J.; Stein, D.; Meyer, C.; Dekker, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007, 7, 1022–1025.

554

Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.

555

Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 Science 2002, 297, 2243–2245.

556

Hong, K. S.; Xu, H. F.; Konishi, H.; Li, X. C. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997–1002.

557

Chen, H.; Chen, C.; Chang, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem. Int. Ed. 2010, 49, 5966–5969.

558

Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 2010, 10, 1088–1092.

559

Wang, X. W.; Liu, G.; Lu, G. Q.; Cheng, H. M. Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods. Int. J. Hydrogen Energy 2010, 35, 8199–8205.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 May 2011
Revised: 14 June 2011
Accepted: 15 June 2011
Published: 15 August 2011
Issue date: November 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

We thank NSF, DARPA, and BES DOE for support. We also thank those authors and many of our collaborators who made contributions to the published data reviewed in the text here. S. X. organized and wrote the paper. Z. L. W. commented on the paper.

Return