Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We demonstrate that the near-infrared (NIR) absorptivity of semiconducting single-walled carbon nanotubes (s-SWCNTs) can be harnessed in blended heterojunctions with the fullerene derivative [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM). Photogenerated charge separation is efficiently driven by the ultrahigh interfacial area of the blends and the favorable energy offsets between the two materials. NIR-sensitive photovoltaic and photodetector devices utilizing the stack (indium tin oxide/ca. 10 nm s-SWCNT: PCBM/100 nm C60/10 nm 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP)/Ag) were fabricated with NIR power conversion efficiencies > 1.3% and peak, zero bias external quantum efficiency of 18% at λ = 1205 nm.
Moet, D. J. D.; Lenes, M.; Morana, M.; Azimi, H.; Brabec, C. J.; Blom, P. W. M. Enhanced dissociation of charge-transfer states in narrow band gap polymer: fullerene solar cells processed with 1, 8-octanedithiol. Appl. Phys. Lett. 2010, 96, 213506.
Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500.
Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667.
Bindl, D. J.; Safron, N. S.; Arnold, M. S. Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 2010, 4, 5657–5664.
Lebedkin, S.; Hennrich, F.; Kiowski, O.; Kappes, M. M. Photophysics of carbon nanotubes in organic polymer–toluene dispersions: Emission and excitation satellites and relaxation pathways. Phys. Rev. B 2008, 77, 165429.
Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synthetic Met. 1999, 103, 2555–2558.
Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.
Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.
Avouris, P.; Martel, R. Progress in carbon nanotube electronics and photonics. MRS Bull. 2010, 35, 306–313.
Ham, M. H.; Paulus, G. L. C.; Lee, C. Y.; Song, C.; Kalantarzadeh, K.; Choi, W.; Han, J. H.; Strano, M. S. Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 2010, 4, 6251–6259.
Holt, J. M.; Ferguson, A. J.; Kopidakis, N.; Larsen, B. A.; Bult, J.; Rumbles, G.; Blackburn, J. L. Prolonging charge separation in P3HT–SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 2010, 10, 4627–4633.
Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35–39.
Arnold, M. S.; Zimmerman, J. D.; Renshaw, C. K.; Xu, X.; Lunt, R. R.; Austin, C. M.; Forrest, S. R. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett. 2009, 9, 3354–3358
Bindl, D. J.; Wu, M. -Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.
Kazaoui, S.; Minami, N.; Nalini, B.; Kim, Y.; Hara, K. Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J. Appl. Phys. 2005, 98, 084314.
Hoppe, H.; Sariciftci, N. S. Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 2006, 16, 45–61.
Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868.
Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583.
Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080–3085.
Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. G.; Kikkawa, J. M. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 2004, 93, 037404.
Miyauchi, Y.; Matsuda, K.; Yamamoto, Y.; Nakashima, N.; Kanemitsu, Y. Length-dependent photoluminescence lifetimes in single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 12905–12908.
Street, R. A.; Schoendorf, M. Interface state recombination in organic solar cells. Phys. Rev. B 2010, 81, 205307.
Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005, 5, 579–583
Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.
Siitonen, A. J.; Tsyboulski, D. A.; Bachilo, S. M.; Weisman, R. B. Dependence of exciton mobility on structure in single-walled carbon nanotubes. J. Phys. Chem. Lett. 2010, 1, 2189–2192.