AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional FeCo–Graphitic Carbon Nanocrystals for Combined Imaging, Drug Delivery and Tumor-Specific Photothermal Therapy in Mice

Sarah P. SherlockHongjie Dai( )
Department of ChemistryStanford UniversityStanfordCA94305USA
Show Author Information

Graphical Abstract

Abstract

Ultrasmall FeCo–graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demonstrate the use of FeCo/GC for highly effective cancer therapy through combined drug delivery, tumor-selective near-infrared photothermal therapy, and cancer imaging of a 4T1 syngeneic breast cancer model. The graphitic carbon shell of the ~4 nm FeCo/GC readily loads doxorubicin (DOX) via π–π stacking and absorbs near-infrared light giving photothermal heating. When used for cancer treatment, intravenously administrated FeCo/GC–DOX led to complete tumor regression in 45% of mice when combined with 20 min of near-infrared laser irradiation selectively heating the tumor to 43–45 ℃. In addition, the use of FeCo/GC–DOX results in reduced systemic toxicity compared with free DOX and appears to be safe in mice monitored for over 1 yr. FeCo/GC–DOX is shown to be a highly integrated nanoparticle system for synergistic cancer therapy leading to tumor regression of a highly aggressive tumor model.

Electronic Supplementary Material

Download File(s)
12274_2011_176_MOESM1_ESM.pdf (370.4 KB)

References

1

Dewhirst, M. W. Future directions in hyperthermia biology. Int. J. Hyperthermia1994, 10, 339–345.

2

Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperthermia2001, 17, 1–18.

3

Hahn, G. M.; Braun, J.; Harkedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43℃) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 937–940.

4

Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematolo2002, 43, 33–56.

5

Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497.

6
Vertrees, R. A.; Jordan, J. M.; Zwischenberger, J. B. Hyperthermia and chemotherapy: The science. In Current Clinical Oncology: Intraperitoneal Cancer Therapy, Helm, C. W.; Edwards, R. P., Eds.; Humana Press Inc. : Totowa, NJ, 2007; pp 71–100.https://doi.org/10.1007/978-1-59745-195-6_6
7

Helm, C. W.; Edwards, R. P. Current Clinical Oncology: Intraperitoneal Cancer Therapy; Humana Press Inc. : Totowa, NJ, 2007.

8

Hildebrandt, B.; Wust, P. The biologic rationale of hyperthermia. Cancer Treat. Res. 2007, 134, 171–184.

9

Purushotham, S.; Chang, P. E. J.; Rumpel, H.; Kee, I. H. C.; Ng, R. T. H.; Chow, P. K. H.; Tan, C. K.; Ramanujan, R. V. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology2009, 20, 305101.

10

Power, S.; Slattery, M. M.; Lee, M. J. Nanotechnology and its relationship to interventional radiology. Part Ⅱ: Drug delivery, thermotherapy, and vascular intervention. Cardiovasc. Intervent. Radiol. 2011, 34, 676–690.

11

Park, J. H.; von Maltzahn, G.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanoparticles for tumor detection and photo-thermally triggered drug delivery. Adv. Mater. 2010, 22, 880–885.

12

Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981–986.

13

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

14

Lee, S. M.; Park, H.; Yoo, K. H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 2010, 22, 4049–4053.

15

Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano2009, 3, 2919–2926.

16

Park, H.; Yang, J.; Seo, S.; Kim, K.; Suh, J.; Kim, D.; Haam, S.; Yoo, K. H. Multifunctional nanoparticles for photo-thermally controlled drug delivery and magnetic resonance imaging enhancement. Small2008, 4, 192–196.

17

Lee, J. H.; Sherlock, S. P.; Terashima, M.; Kosuge, H.; Suzuki, Y.; Goodwin, A.; Robinson, J.; Seo, W. S.; Liu, Z.; Luong, R. et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn. Reson. Med. 2009, 62, 1497–1509.

18

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

19

Sherlock, S. P.; Tabakman, S. M.; Xie, L. M.; Dai, H. J. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano2011, 5, 1505–1512.

20

Bausero, M. A.; Page, D. T.; Osinaga, E.; Asea, A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biol. 2004, 25, 243–251.

21

Working, P. K.; Dayan, A. D. Pharmacological-toxicological expert report: CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol. 1996, 15, 751–785.

22

Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39, 1125–1131.

23

Liu, D. L.; Andersson-Engels, S.; Sturesson, C.; Svanberg, K.; Hakansson, C. H.; Svanberg, S. Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy. Cancer Lett. 1997, 111, 157–165.

24

Liu, P.; Zhang, A.; Xu, Y.; Xu, L. X. Study of non-uniform nanoparticle liposome extravasation in tumour. Int. J. Hyperthermia2005, 21, 259–270.

25

Lu, D.; Wientjes, M. G.; Lu, Z.; Au, J. L. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 2007, 322, 80–88.

26

Kosuge, H.; Sherlock, S. P.; Kitagawa, T.; Terashima, M.; Barral, J. K.; Nishimura, D. G.; Dai, H. J.; McConnell, M. V. FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One2011, 6, e14523.

27

Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.

28

Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668–7672.

Nano Research
Pages 1248-1260
Cite this article:
Sherlock SP, Dai H. Multifunctional FeCo–Graphitic Carbon Nanocrystals for Combined Imaging, Drug Delivery and Tumor-Specific Photothermal Therapy in Mice. Nano Research, 2011, 4(12): 1248-1260. https://doi.org/10.1007/s12274-011-0176-z

628

Views

62

Crossref

N/A

Web of Science

64

Scopus

0

CSCD

Altmetrics

Received: 25 July 2011
Revised: 22 September 2011
Accepted: 27 September 2011
Published: 04 November 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return