Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

Jinhyun Cho1Qiubao Lin2,3Sungwoo Yang2Jay G. Simmons Jr.2Yingwen Cheng2Erica Lin2Jianqiu Yang2John V. Foreman4Henry O. Everitt4,5Weitao Yang2Jungsang Kim1Jie Liu2()
Department of Electrical and Computer EngineeringFitzpatrick Institute for PhotonicsDuke UniversityDurham, North Carolina27708USA
Department of ChemistryFrench Family Science CenterDuke UniversityDurham, North Carolina27708USA
School of ScienceJimei UniversityXiamen361021China
U.S. Army Aviation and Missile ResearchDevelopment, and Engineering CenterWeapons Sciences DirectorateRedstone ArsenalAL 35898USA
Department of PhysicsDuke UniversityDurhamNC 27708USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We present a bottom-up synthesis, spectroscopic characterization, and ab initio simulations of star-shaped hexagonal zinc oxide (ZnO) nanowires. The ZnO nanostructures were synthesized by a low-temperature hydrothermal growth method. The cross-section of the ZnO nanowires transformed from a hexagon to a hexagram when sulfur dopants from thiourea [SC(NH2)2] were added into the growth solution, but no transformation occurred when urea (OC(NH2)2) was added. Comparison of the X-ray photoemission and photoluminescence spectra of undoped and sulfur-doped ZnO confirmed that sulfur is responsible for the novel morphology. Large-scale theoretical calculations were conducted to understand the role of sulfur doping in the growth process. The ab initio simulations demonstrated that the addition of sulfur causes a local change in charge distribution that is stronger at the vertices than at the edges, leading to the observed transformation from hexagon to hexagram nanostructures.

Electronic Supplementary Material

Download File(s)
nr-5-1-20_ESM.pdf (224.4 KB)

References

1

Foreman, J. V.; Li, J.; Peng, H.; Choi, S.; Everitt, H. O.; Liu, J. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders. Nano Lett. 2006, 6, 1126–1130.

2

Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.

3

Foreman, J. V.; Everitt, H. O.; Yang, J.; Liu, J. Influence of temperature and photoexcitation density on the quantum efficiency of defect emission in ZnO powders. Appl. Phys. Lett. 2007, 91, 011902.

4

Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

5

Reynolds, D. C.; Look, D. C.; Jogai, B. Fine structure on the green band in ZnO. J. Appl. Phys. 2001, 89, 6189–6191.

6

Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.

7

Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.

8

Weintraub, B.; Wei, Y.; Wang, Z. L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Edit. 2009, 48, 8981–8985.

9

Wang, Z. L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

10

Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

11

Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

12

Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401.

13

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Edit. 2003, 42, 3031–3034.

14

Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 2005, 5, 1231–1236.

15

Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mat. Sci. Eng. R 2009, 64, 33–71.

16

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

17

Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.

18

Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 2005, 309, 1700–1704.

19

Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

20

Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.

21

Gao, P. X.; Wang, Z. L. Nanopropeller arrays of zinc oxide. Appl. Phys. Lett. 2004, 84, 2883–2885.

22

Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire super-structures. Nat. Nanotechnol. 2009, 4, 824–829.

23

Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Edit. 2002, 41, 1188–1191.

24

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

25

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

26

Wang, Y.; Perdew, J. P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298–13307.

27

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

28

Geng, B. Y.; Wang, G. Z.; Jiang, Z.; Xie, T.; Sun, S. H.; Meng, G. W.; Zhang, L. D. Synthesis and optical properties of S-doped ZnO nanowires. Appl. Phys. Lett. 2003, 82, 4791–4793.

Nano Research
Pages 20-26
Cite this article:
Cho J, Lin Q, Yang S, et al. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism. Nano Research, 2012, 5(1): 20-26. https://doi.org/10.1007/s12274-011-0180-3
Metrics & Citations  
Article History
Copyright
Return