AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photothermoelectric Effects in Single-Walled Carbon Nanotube Films: Reinterpreting Scanning Photocurrent Experiments

Benoit C. St-Antoine1David Ménard1( )Richard Martel2( )
Regroupement Quebecois sur les Materiaux de Pointe (RQMP) and Department of Engineering Physics École Polytechnique de MontréalMontréal QC H3C 3A7 Canada
Regroupement Quebecois sur les Materiaux de Pointe (RQMP) and Department of Chemistry Université de Montréal, Montréal QC H3T 1J4 Canada
Show Author Information

Graphical Abstract

Abstract

We revisit the mechanism leading to the photoresponse of locally illuminated single-walled carbon nanotube (SWNT) films deposited on substrates. Our study examines the impact of multiple device parameters and provides many evidences that the position-dependent photocurrent is dominated by photothermoelectric effects. The photoresponse arises from the temperature variations at the metal–nanotube film interfaces, where mismatches of the Seebeck coefficients are measured. Our work also stresses the impact of the substrates, electrode materials and post-thermal treatments on the amplitude and dynamics of the photoresponse. The knowledge gained should guide the future development of photothermoelectric devices and detectors based on SWNTs.

Electronic Supplementary Material

Download File(s)
nr-5-2-73_ESM.pdf (323.2 KB)

References

1

Avouris, P.; Martel, R. Progress in carbon nanotube electronics and photonics. MRS Bull. 2010, 35, 306–313.

2

Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067–1071.

3

Sfeir, M. Y.; Misewich, J. A.; Rosenblatt, S.; Wu, Y.; Voisin, C.; Yan, H. G.; Berciaud, S.; Heinz, T. F.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Hone, J.; Carr, G. L. Infrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes. Phys. Rev. B 2010, 82, 195424.

4

Balasubramanian, K.; Burghard, M.; Kern, K.; Scolari, M.; Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 2005, 5, 507–510.

5

Itkis, M. E.; Borondics, F.; Yu, A. P.; Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 2006, 312, 413–416.

6

Lu, S. X.; Panchapakesan, B. Photoconductivity in single wall carbon nanotube sheets. Nanotechnology 2006, 17, 1843–1850.

7

Matsuoka, Y.; Fujiwara, A.; Ogawa, N.; Miyano, K.; Kataura, H.; Maniwa, Y.; Suzuki, S.; Achiba, Y. Temperature dependence of photoconductivity at 0.7 eV in single-wall carbon nanotube films. Sci. Technol. Adv. Mat. 2003, 4, 47–50.

8

Lu, R. T.; Li, Z. Z.; Xu, G. W.; Wu, J. Z. Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels. Appl. Phys. Lett. 2009, 94, 163110.

9

Li, Z. R.; Kunets, V. P.; Saini, V.; Xu, Y.; Dervishi, E.; Salamo, G. J.; Biris, A. R.; Biris, A. S. Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 2009, 3, 1407–1414.

10

Bindl, D. J.; Wu, M. Y.; Prehn, F. C.; Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 2011, 11, 455–460.

11

St-Antoine, B. C.; Ménard, D.; Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 2011, 11, 609–613.

12

Hu, C. H.; Liu, C. H.; Chen, L. Z.; Meng, C. Z.; Fan, S. S. A demo opto-electronic power source based on single-walled carbon nanotube sheets. ACS Nano 2010, 4, 4701–4706.

13

St-Antoine, B. C.; Ménard, D.; Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 2009, 9, 3503–3508.

14

Varghese, B.; Tamang, R.; Tok, E. S.; Mhaisalkar, S. G.; Sow, C. H. Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J. Phys. Chem. C 2010, 114, 15149–15156.

15

Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566.

16

Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 2009, 9, 1742–1746.

17

Freitag, M.; Tsang, J. C.; Bol, A.; Yuan, D. N.; Liu, J.; Avouris, P. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 2007, 7, 2037–2042.

18

Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.

19

Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 2009, 79, 245430.

20

Liu, Y.; Lu, S. X.; Panchapakesan, B. Alignment enhanced photoconductivity in single wall carbon nanotube films. Nanotechnology 2009, 20, 035203.

21

Merchant, C. A.; Marković, N. Effects of diffusion on photocurrent generation in single-walled carbon nanotube films. Appl. Phys. Lett. 2008, 92, 243510.

22

Sarker, B. K.; Arif, M.; Stokes, P.; Khondaker, S. I. Diffusion mediated photoconduction in multiwalled carbon nanotube films. J. Appl. Phys. 2009, 106, 074307.

23

Ghosh, S.; Sarker, B. K.; Chunder, A.; Zhai, L.; Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 2010, 96, 163109.

24

Grosse, K. L.; Bae, M. H.; Lian, F. F.; Pop, E.; King, W. P. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nat. Nanotechnol. 2011, 6, 287–290.

25

Sun, J. L.; Xu, J.; Zhu, J. L.; Li, B. L. Disordered multiwalled carbon nanotube mat for light spot position detecting. Appl. Phys. A–Mater. 2008, 91, 229–233.

26

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

27

Merchant, C. A.; Marković, N. The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts. Nanotechnology 2009, 20, 175202.

28

Lien, D. H.; Hsu, W. K.; Zan, H. W.; Tai, N. H.; Tsai, C. H. Photocurrent amplification at carbon nanotube–metal contacts. Adv. Mater. 2006, 18, 98–103.

29

Bradley, K.; Jhi, S. H.; Collins, P. G.; Hone, J.; Cohen, M. L.; Louie, S. G.; Zettl, A. Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys. Rev. Lett. 2000, 85, 4361–4364.

Nano Research
Pages 73-81
Cite this article:
St-Antoine BC, Ménard D, Martel R. Photothermoelectric Effects in Single-Walled Carbon Nanotube Films: Reinterpreting Scanning Photocurrent Experiments. Nano Research, 2012, 5(2): 73-81. https://doi.org/10.1007/s12274-011-0186-x

627

Views

43

Crossref

N/A

Web of Science

42

Scopus

5

CSCD

Altmetrics

Received: 05 October 2011
Revised: 09 November 2011
Accepted: 11 November 2011
Published: 14 December 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return