AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Studies of Graphene-Based Nanoelectromechanical Switches

Zhiwen Shi1Hongliang Lu1Lianchang Zhang1Rong Yang1Yi Wang1Donghua Liu1Haiming Guo1Dongxia Shi1Hongjun Gao1Enge Wang2Guangyu Zhang1( )
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of SciencesBeijing 100190 China
International Centre of Quantum Materials, School of Physics, Peking University Beijing 100871 China
Show Author Information

Graphical Abstract

Abstract

Electromechanical switch devices employing suspended graphene as movable elements have been developed. Their on and off states can be controlled by modulating the electrostatic force applied to the graphene. The devices exhibit on–off ratios of up to 104 and lifetimes of over 500 cycles. The prototype device demonstrates the feasibility of using multilayer graphene in electromechanical systems. Measurements of the mechanical properties of the free-standing monolayer graphene gave a value of 0.96 TPa for the Young's modulus and a van der Waals force with silicon oxide of 0.17 nN/nm2.

Electronic Supplementary Material

Download File(s)
nr-5-2-82_ESM.pdf (159.8 KB)

References

1

Craighead, H. G. Nanoelectromechanical systems. Science 2000, 290, 1532–1535.

2

Meindl, J. D.; Chen, Q.; Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 2001, 293, 2044–2049.

3

Frank, D. J.; Dennard, R. H.; Nowak, E.; Solomon, P. M.; Taur, Y.; Wong, H. S. P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288.

4

Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94–97.

5

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

6

Semet, V.; Binh, V. T.; Guillot, D.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; Legagneux, P.; Pribat, D. Reversible electromechanical characteristics of individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 223103.

7

Jang, J. E.; Cha, S. N.; Choi, Y.; Amaratunga, G. A. J.; Kang, D. J.; Hasko, D. G.; Jung, J. E.; Kim, J. M. Nanoelectro-mechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett. 2005, 87, 163114.

8

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

9

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

10

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

11

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

12

Son, Y. W.; Cohen, M. M.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

13

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

14

Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Roehrl, J., et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

15

Zhang, L.; Shi, Z.; Wang, Y.; Yang, R.; Shi, D.; Zhang, G. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.

16

Yang, R.; Zhang, L.; Wang, Y.; Shi, Z.; Shi, D.; Gao, H.; Wang, E.; Zhang, G. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.

17

Shi, Z.; Yang, R.; Zhang, L.; Wang, Y.; Liu, D.; Shi, D.; Wang, E.; Zhang, G. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.

18

Milaninia, K. M.; Baldo, M. A.; Reina, A.; Kong, J. All graphene electromechanical switch fabricated by chemical vapor deposition. Appl. Phys. Lett. 2009, 95, 183105.

19

Lauren, C. Fabrication of a three terminal nanomechanical graphene switch. In 2010 NNIN REU Research Accomplishments, 2010; p. 118.

20

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

21

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

22

Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.

23

Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.

24

Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Tech. B 2007, 25, 2558–2561.

25

Xu, Z. P. Graphene nano-ribbons under tension. J. Comput. Theor. Nanosci. 2009, 6, 625–628.

26

Lee, B. H.; Hwang, H. J.; Cho, C. H.; Lim, S. K.; Lee, S. Y.; Hwang, H. Nano-electromechanical switch–CMOS hybrid technology and its applications. J. Nanosci. Nanotechnol. 2011, 11, 256–261

Nano Research
Pages 82-87
Cite this article:
Shi Z, Lu H, Zhang L, et al. Studies of Graphene-Based Nanoelectromechanical Switches. Nano Research, 2012, 5(2): 82-87. https://doi.org/10.1007/s12274-011-0187-9

740

Views

54

Crossref

N/A

Web of Science

62

Scopus

4

CSCD

Altmetrics

Received: 30 September 2011
Revised: 10 November 2011
Accepted: 11 November 2011
Published: 03 December 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return