AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Is Graphene Aromatic?

Department of Chemistry and Biochemistry Utah State University0300 Old Main Hill, Logan Utah 84322 USA
Department of Physical and Colloid Chemistry Peoples' Friendship University of Russia6 Miklukho-Maklaya St., Moscow 117198 Russian Federation
Show Author Information

Graphical Abstract

Abstract

We analyze the chemical bonding in graphene using a fragmental approach, the adaptive natural density partitioning method, electron sharing indices, and nucleus-independent chemical shift indices. We prove that graphene is aromatic, but its aromaticity is different from the aromaticity in benzene, coronene, or circumcoronene. Aromaticity in graphene is local with two π-electrons delocalized over every hexagon ring. We believe that the chemical bonding picture developed for graphene will be helpful for understanding chemical bonding in defects such as point defects, single-, double-, and multiple vacancies, carbon adatoms, foreign adatoms, substitutional impurities, and new materials that are derivatives of graphene.

Electronic Supplementary Material

Download File(s)
nr-5-2-117_ESM.pdf (292.5 KB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Unarunotai, S.; Murata, Y.; Chialvo, C. E.; Mason, N.; Petrov, I.; Nuzzo, R. G.; Moore, J. S.; Rogers, J. A. Conjugated carbon monolayer membranes: Methods for synthesis and integration. Adv. Mater. 2010, 22, 1072–1077.

4

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

5

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intristic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

6

Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.

7

Frank, I. W.; Tanenbaum, D. M.; Van der Zanda, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

8

Scarpa, F.; Adhikari, S.; Phani, A. S. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 2009, 20, 065709.

9

Faccio, R.; Denis, P. A.; Pardo, H.; Goyenola, C.; Mombru, A. W. Mechanical properties of graphene nanoribbons. J. Phys. Condens. Matter 2009, 21, 285304.

10

Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

11

Müllen, K.; Rabe, J. P. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Acc. Chem. Res. 2008, 41, 511–520.

12

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

13

Kekulé, A. Sur la constitution des substances aromatiques. Bull. Soc. Chim. Fr. (Paris) 1865, 3, 98–110.

14

Kekulé, A. Note sur quelques produits de substitution de la benzene. Bull. Acad. Roy. Belg. 1866, 119, 551–563.

15

Kekulé, A. Untersuchungen über aromatische Verbindungen. Ann. Chem. 1866, 137, 129–136.

16

Hückel, P. Z. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 1931, 70, 204–286.

17

Moran, D.; Stahl, F.; Bettinger, H. F.; Schaefer, H. F. Ⅲ; Schleyer, P. V. R. Towards graphite: Magnetic properties of large polybenzenoid hydrocarbons. J. Am. Chem. Soc. 2003, 125, 6746–6752.

18

Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H. J.; Hommes, N. J. R. V. E. Nucleus-independent chemical shifts: A simple and efficient aromaticity probe. J. Am. Chem. Soc. 1996, 118, 6317–6318.

19

Galeev, T. R.; Chen, Q.; Guo, J. C.; Bai, H.; Miao, C. Q.; Lu, H. G.; Sergeeva, A. P.; Li, S. D.; Boldyrev, A. I. Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Phys. Chem. Chem. Phys. 2011, 13, 11575–11578.

20

Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.

21

Tang, H.; Ismail-Beigi, S. Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 2009, 80, 134113.

22

Yang, X.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402.

23

Donohue, J. The Structures of the Elements; Wiley-Interscience: New York, 1974.

24

Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

25

Zubarev, D. Y.; Boldyrev, A. I. Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. J. Org. Chem. 2008, 73, 9251–9258.

26

Zubarev, D. Y.; Boldyrev, A. I. Deciphering chemical bonding in golden cages. J. Phys. Chem. A 2009, 113, 866–868.

27

Sergeeva, A. P.; Boldyrev, A. I. The chemical bonding of Re3Cl9 and Re3Cl92– revealed by the adaptive natural density partitioning analyses. Comment. Inorg. Chem. 2010, 31, 2–12.

28

Steiner, E.; Fowler, P. W.; Jenneskens, L. W. Counter-rotating ring currents in coronene and corannulene. Angew. Chem. Int. Ed. 2001, 40, 362–366.

29

Ciesielski, A.; Cyranski, M. K.; Krygowski, T. M.; Fowler, P. W.; Lillington, M. Super-delocalized valence isomer of coronene. J. Org. Chem. 2006, 71, 6840–6845.

30

Balaban, A. T.; Bean, D. E.; Fowler, P. W. Patterns of ring current in coronene isomers. Acta Chim. Slov. 2010, 57, 507–512.

31

Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem. Rev. 2005, 105, 3911–3947.

32

Merino, G.; Vela, A.; Heine, T. Description of electron delocalization via the analysis of molecular fields. Chem. Rev. 2005, 105, 3812–3841.

33

Bultinck, P.; Ponec, R.; Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005, 18, 706–718.

34

Feixas, F.; Matito, E.; Solà, M.; Poater, J. Analysis of Hückel's [4n + 2] rule through electronic delocalization measures. J. Phys. Chem. A 2008, 112, 13231–13238.

35

Feixas, F.; Matito, E.; Duran, M.; Poater, J.; Solà, M. Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor. Chem. Acc. 2011, 128, 419–431.

36

Feixas, F.; Jimenez-Halla, J. O. C.; Matito, E.; Poater, J.; Solà, M. A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity. J. Chem. Theory Comput. 2010, 6, 1118–1130.

37

Solà, M.; Feixas, F.; Jimenez-Halla, J. O. C.; Matito, E.; Poater, J. A critical assessment of the performance of magnetic and electronic indices of aromaticity. Symmetry 2010, 2, 1156–1179.

38

Poater, J.; Solà, M.; Viglione, R. G.; Zanasi, R. Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity. J. Org. Chem. 2004, 69, 7537–7542.

39

Matito, E.; Feixas, F.; Solà, M. Electron delocalization and aromaticity measures within the Hückel molecular orbital method. J. Mol. Struct. (Theochem) 2007, 811, 3–11.

40

Foster, J. P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218.

41

Weinhold, F.; Landis, C. R. Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005.

42

Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

43

Lee, C.; Yang, W.; Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

44

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

45

Frisch, M. J. et al. Gaussian 03, (Revision D. 01), Gaussian, Inc., Wallingford CT, 2004.

46

Varetto, U. Molekel 5.4.0.8, Swiss National Supercomputing Centre, Manno (Switzerland).

47

Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. V. R. Which NICS aromaticity index for planar π rings is best? Org. Lett. 2006, 8, 863–866.

48

Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 2005, 105, 3842–3888.

49

Biegler-König, F. W.; Bader, R. F. W.; Tang, T. H. Calculation of the average properties of atoms in molecules. Ⅱ. J. Comput. Chem. 1982, 3, 317–328.

50
Matito, E. ESI-3D: Electron Sharing Indices Program for 3D Molecular Space Partitioning. Institute of Computational Chemistry: Girona, 2006. http://iqc.udg.edu.es/~eduard/ESI (Updated March 3, 2006).
Nano Research
Pages 117-123
Cite this article:
Popov IA, Bozhenko KV, Boldyrev AI. Is Graphene Aromatic?. Nano Research, 2012, 5(2): 117-123. https://doi.org/10.1007/s12274-011-0192-z

819

Views

112

Crossref

N/A

Web of Science

109

Scopus

0

CSCD

Altmetrics

Received: 28 October 2011
Revised: 03 December 2011
Accepted: 05 December 2011
Published: 24 December 2011
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011
Return