Graphical Abstract

This work demonstrates the synthesis of Pt ultrathin nanowires assisted by chromium hexacarbonyl [Cr(CO)6]. The nanowires exhibit a uniform diameter of 2–3 nm. The length can reach up to several microns. It was found that Cr species produced dumbbell-like nuclei which play a pivotal role in the formation of the Pt nanowires. Such Pt nanowires can be tuned to nanocubes by simply decreasing the concentration of [Cr(CO)6]. Compared to a commercial Pt/C catalyst (45 wt%, Vulcan, Tanaka) and Pt black (fuel cell grade, Sigma), the synthesized Pt nanowires exhibit superior performance in electrocatalytic oxygen reduction with a specific activity of 0.368 mA/cm2, which was 2.7 and 1.8 times greater than that of Pt/C (0.138 mA/cm2) and Pt black (0.202 mA/cm2), respectively. The mass activity of Pt nanowires (0.088 mA/μg) is 2.3 times that of Pt black (0.038 mA/μg) and comparable to that of Pt/C (0.085 mA/μg).
Lee, Y.; Loew, A.; Sun, S. H. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem. Mater. 2010, 22, 755–761.
Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.
Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1926.
Rao, C. N. R.; Vivekchand, S. R. C.; Biswasa, K.; Govindaraja, A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728–3749.
Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.
Peng, Z. M.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronano-structures. J. Am. Chem. Soc. 2009, 131, 7542–7543.
Lim, S. I.; Ojea-Jimenez, I.; Varon, M.; Casals, E.; Arbiol, J.; Puntes, V. Synthesis of platinum cubes, polypods, cubocta-hedrons, and raspberries assisted by cobalt nanocrystals. Nano Lett. 2010, 10, 964–973.
Koenigsmann, C.; Zhou, W.; Adzic, R. R.; Sutter, E.; Wong, S. S. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 2010, 10, 2806–2811.
Sun, S. H.; Zhang, G. X.; Geng, D. H.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 123, 442–446.
Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J.; Abruñhen, H. D. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc. 2009, 131, 602–608.
Zhang, Z. Y.; Li, M. J.; Wu, Z. L.; Li, W. Z. Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells. Nanotechnology 2011, 22, 015602.
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.
Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.
Chen, J.; Herricks, T.; Geissler, M.; Xia, Y. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc. 2004, 126, 10854–10855.
Sun, S. H.; Zhang, G. X.; Zhong, Y.; Hao, H.; Li, R. Y.; Zhou, X. R.; Sun, X. L. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem. Commun. 2009, 7048–7050.
Wang, C.; Sun, S. H. Facile synthesis of ultrathin and single-crystalline Au nanowires. Chem. Asian J. 2009, 4, 1028–1034.
Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. 2007, 46, 6333–6335.
Wang, C.; Daimon, H.; Lee, Y. M.; Kim, J. M.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.
Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.
Chen, M.; Kim, J. M.; Liu, J. P.; Fan, H. Y.; Sun, S. H. Synthesis of FePt nanocubes and their oriented self-assembly. J. Am. Chem. Soc. 2006, 128, 7132–7133.
Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.
Wang, D. H.; Luo, H. M.; Kou, R.; Gil, M. P.; Xiao, S. G.; Golub, V. O.; Yang, Z. Z.; Brinker, C. J.; Lu, Y. F. A general route to macroscopic hierarchical 3D nanowire networks. Angew. Chem. Int. Ed. 2004, 116, 6295–6299.
Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.