AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anomalous Kink Behavior in the Current–Voltage Characteristics of Suspended Carbon Nanotubes

Moh AmerAdam BushmakerSteve Cronin( )
Department of Electrical EngineeringUniversity of Southern California3710 McClintock Ave.Los AngelesCalifornia90089USA
Show Author Information

Graphical Abstract

Abstract

Electrically-heated suspended, nearly defect-free, carbon nanotubes (CNTs) exhibiting negative differential conductance in the high bias regime experience a sudden drop in current (or "kink"). The bias voltage at the kink (Vkink) is found to depend strongly on gate voltage, substrate temperature, and gas environment. After subtracting the voltage drop across the contacts, however, the kink bias voltages converge around 0.2 V, independent of gate voltage and gas environment. This bias voltage of 0.2 V corresponds to the threshold energy of optical phonon emission. This phenomenon is corroborated by simultaneously monitoring the Raman spectra of these nanotubes as a function of bias voltage. At the kink bias voltage, the G band Raman modes experience a sudden downshift, further indicating threshold optical phonon emission. A Landauer model is used to fit these kinks in various gas environments where the kink is modeled as a change in the optical phonon lifetime, which corresponds to a change in the non-equilibrium factor that describes the existence of hot phonons in the system.

Electronic Supplementary Material

Download File(s)
nr-5-3-172_ESM.pdf (342.2 KB)

References

1

Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.

2

Pop, E.; Mann, D.; Cao, J.; Wang, Q.; Goodson, K.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.

3

Cobden, D. H.; Bockrath, M.; McEuen, P. L.; Rinzler, A. G.; Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 1998, 81, 681–684.

4

Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott Insulating state in ultraclean carbon nanotubes Science 2009, 323, 106–110.

5

Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.

6

Bockrath, M.; Cobden, D. H.; Lu, J.; Rinzler, A. G.; Smalley, R. E.; Balents, L.; McEuen, P. L. Luttinger-liquid behaviour in carbon nanotubes. Nature 1999, 397, 598–601.

7

Mann, D.; Pop, E.; Cao, J.; Wang, Q.; Goodson, K.; Dai, H. J. Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. 2006, 110, 1502–1505.

8

Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Üstünel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen P. L. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 2004, 4, 517–520.

9

McEuen, P. L.; Fuhrer, M. S.; Park, H. K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.

10

Radosavljevic, M.; Lefebvre, J.; Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.

11
Giamarchi, T. Quantum physics in one dimension; Oxford University Press: USA, 2004.https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
12

Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

13

Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Gate voltage controllable non-equilibrium and non-ohmic behavior in suspended carbon nanotubes. Nano Lett. 2009, 9, 2862–2866.

14

Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618–3622.

15

Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.

16

Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A. C.; Robertson, J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 2005, 95, 236802.

17

Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.

18

Supriyo, D. Electronic transport in mesoscopic systems; Cambridge University Press: Cambridge and New York, 1997.

19

Farhat, H.; Son, H.; Samsonidze, G. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 145506.

20

Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys. 2010, 108, 084307.

21

Mingo, N.; Broido, D. A. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves". Nano Lett. 2005, 5, 1221–1225.

22

Liu, Z. W.; Bushmaker, A.; Aykol, M.; Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 2011, 5, 4634–4640.

23

Zhao, Y.; Liao, A.; Pop, E. Multiband mobility in semi-conducting carbon nanotubes. IEEE Electron Device Lett. 2009, 30, 1078–1080.

24

Xia, M. G.; Zhang, L.; Zhang, S. L. Effect of optical phonons scattering on electronic current in metallic carbon nanotubes. Phys. Lett. A 2009, 373, 385–390.

25

Liao, A.; Zhao, Y.; Pop, E. Avalanche-induced current enhancement in semiconducting carbon nanotubes. Phys. Rev. Lett. 2008, 101, 256804.

Nano Research
Pages 172-180
Cite this article:
Amer M, Bushmaker A, Cronin S. Anomalous Kink Behavior in the Current–Voltage Characteristics of Suspended Carbon Nanotubes. Nano Research, 2012, 5(3): 172-180. https://doi.org/10.1007/s12274-012-0197-2

597

Views

14

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 20 October 2011
Revised: 27 December 2011
Accepted: 30 December 2011
Published: 22 February 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return