AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vertical Oxide Nanotubes Connected by Subsurface Microchannels

Henrik Persson1( )Jason P. Beech1Lars Samuelson1Stina Oredsson2Christelle N. Prinz1,3Jonas O. Tegenfeldt1,4( )
Solid State Physics/The Nanometer Structure ConsortiumLund University, Box 118SE-221 00Sweden
Department of BiologyLund UniversitySE-223 62Sweden
Neuronano Research CenterLund UniversitySE-221 84Sweden
Department of PhysicsUniversity of GothenburgSE-412 96Sweden
Show Author Information

Graphical Abstract

Abstract

We describe the fabrication of arrays of oxide nanotubes using a combination of bottom up and top down nanofabrication. The nanotubes are made from epitaxially grown semiconductor nanowires that are covered with an oxide layer using atomic layer deposition. The tips of the oxide-covered nanowires are removed by argon sputtering and the exposed semiconductor core is then selectively etched, leaving a hollow oxide tube. We show that it is possible to create fluidic connections to the nanotubes by a combination of electron beam lithography to precisely define the nanotube positions and controlled wet under-etching. DNA transport is demonstrated in the microchannel. Cells were successfully cultured on the nanotube arrays, demonstrating compatibility with cell-biological applications. Our device opens up the possibility of injecting molecules into cells with both spatial and temporal control.

Electronic Supplementary Material

Download File(s)
nr-5-3-190_ESM.pdf (155.1 KB)
nr-5-3-190_ESM_Movie.wmv (4.5 MB)

References

1

Prinz, C.; Hallstrom, W.; Martensson, T.; Samuelson, L.; Montelius, L.; Kanje, M. Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology 2008, 19, 345101.

2

Hallstrom, W.; Prinz, C. N.; Suyatin, D.; Samuelson, L.; Montelius, L.; Kanje, M. Rectifying and sorting of regenerating axons by free-standing nanowire patterns: A highway for nerve fibers. Langmuir 2009, 25, 4343–4346.

3

Hallstrom, W.; Lexholm, M.; Suyatin, D. B.; Hammarin, G.; Hessman, D.; Samuelson, L.; Montelius, L.; Kanje, M.; Prinz, C. N. Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett. 2010, 10, 782–787.

4

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

5

Dimaki, M.; Vazquez, P.; Olsen, M. H.; Sasso, L.; Rodriguez-Trujillo, R.; Vedarethinam, I.; Svendsen, W. E. Fabrication and characterization of 3d micro- and nanoelectrodes for neuron recordings. Sensors 2010, 10, 10339–10355.

6

Linsmeier, C. E.; Prinz, C. N.; Pettersson, L. M. E.; Caroff, P.; Samuelson, L.; Schouenborg, J.; Montelius, L.; Danielsen, N. Nanowire biocompatibility in the brain—Looking for a needle in a 3d stack. Nano Lett. 2009, 9, 4184–4190.

7

Hallstrom, W.; Martensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 2007, 7, 2960–2965.

8

Berthing, T.; Bonde, S.; Sorensen, C. B.; Utko, P.; Nygard, J.; Martinez, K. L. Intact mammalian cell function on semiconductor nanowire arrays: New perspectives for cell-based biosensing. Small 2011, 7, 640–647.

9

Park, S.; Kim, Y. -S.; Kim, W. B.; Jon, S. Carbon nanosyringe array as a platform for intracellular delivery. Nano Lett. 2009, 9, 1325–1329.

10

McKnight, T. E.; Melechko, A. V.; Griffin, G. D.; Guillorn, M. A.; Merkulov, V. I.; Serna, F.; Hensley, D. K.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003, 14, 551–556.

11

Shalek, A. K.; Robinsson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D. -R.; Yoon, M. -H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S., et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. P. Natl. Acad. Sci. USA 2010, 107, 1870–1875.

12

Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

13

Meister, A.; Gabi, M.; Behr, P.; Studer, P.; Voros, J.; Niedermann, P.; Bitterli, J.; Polesel-Maris, J.; Liley, M.; Heinzelmann, H., et al. FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009, 9, 2501–2507.

14

Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes P. Natl. Acad. Sci. USA 2007, 104, 8218–8222.

15

Singhal, R.; Orynbayeva, Z.; Sundaram, R. V. K.; Niu, J. J.; Bhattacharyya, S.; Vitol, E. A.; Schrlau, M. G.; Papazoglou, E. S.; Friedman, G.; Gogotsi, Y. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 2011, 6, 57–64.

16

Vakarelski, I. U.; Brown, S. C.; Higashitani, K.; Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 2007, 23, 10893–10896.

17

Kobayashi, N.; Rivas-Carillo, J. D.; Soto-Gutierrez, A.; Fukazawa, T.; Chen, Y.; Navarro-Alvarez, N.; Tanaka, N. Gene delivery to embryonic stem cells. Birth Defects Res. C 2005, 75, 10–18.

18

Karra, D.; Dahm, R. Transfection techniques for neuronal cells. J. Neurosci. 2010, 30, 6171–6177.

19

Zhang, Y.; Yu, L. C. Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol. 2008, 19, 506–510.

20

Zhang, Y.; Yu, L. C. Single-cell microinjection technology in cell biology. BioEssays 2008, 30, 606–610.

21

McAllister, D. V.; Allen, M. G.; Prausnitz, M. R. Microfabricated microneedles for gene and drug delivery. Annu. Rev. Biomed. Eng. 2000, 2, 289–313.

22

Adamo, A.; Jensen, K. F. Microfluidic based single cell microinjection. Lab Chip 2008, 8, 1258–1261.

23

Matsuoka, H.; Komazaki, T.; Mukai, Y.; Shibusawa, M.; Akane, H.; Chaki, A.; Uetake, N.; Saito, M. High throughput easy microinjection with a single-cell manipulation supporting robot. J. Biotechnol. 2005, 116, 185–194.

24

Schrlau, M. G.; Falls, E. M.; Ziober, B. L.; Bau, H. H. Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008, 19, 015101.

25

Lee, S.; An, R.; Hunt, A. J. Liquid glass electrodes for nanofluidics. Nat. Nanotechnol. 2010, 5, 412–416.

26

Kim, B. M.; Murray, T.; Bau, H. H. The fabrication of integrated carbon pipes with sub-micron diameters. Nanotechnology 2005, 16, 1317–1320.

27

Han, S. W.; Nakamura, C.; Kotobuki, N.; Obataya, I.; Ohgushi, H.; Nagamune, T.; Miyake, J. High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomed. Nanotechnol. 2008, 4, 215–225.

28

Kouklin, N. A.; Kim, W. E.; Lazareck, A. D.; Xu, J. M. Carbon nanotube probes for single-cell experimentation and assays. Appl. Phys. Lett. 2005, 87, 173901.

29

Skold, N.; Hallstrom, W.; Persson, H.; Montelius, L.; Kanje, M.; Samuelson, L.; Prinz, C. N.; Tegenfeldt, J. O. Nanofluidics in hollow nanowires. Nanotechnology. 2010, 21, 155301.

30

Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.

31

Suyatin, D. B.; Hallstrom, W.; Samuelson, L.; Montelius, L.; Prinz, C. N.; Kanje, M. Gallium phosphide nanowire arrays and their possible application in cellular force investigations. J. Vac. Sci. Technol. B 2009, 27, 3092–3094.

32

Chang, K. L.; Lee, C. K.; Hsu, J. W.; Hsieh, H. F.; Shih, H. C. The etching behavior of n-gap in aqua regia solutions. J. Appl. Electrochem. 2005, 35, 77–84.

Nano Research
Pages 190-198
Cite this article:
Persson H, Beech JP, Samuelson L, et al. Vertical Oxide Nanotubes Connected by Subsurface Microchannels. Nano Research, 2012, 5(3): 190-198. https://doi.org/10.1007/s12274-012-0199-0

787

Views

36

Crossref

N/A

Web of Science

36

Scopus

3

CSCD

Altmetrics

Received: 01 July 2011
Revised: 23 November 2011
Accepted: 30 December 2011
Published: 07 February 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return