AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cellular Localization, Accumulation and Trafficking of Double-Walled Carbon Nanotubes in Human Prostate Cancer Cells

Vera Neves1,2Andreas Gerondopoulos1,Elena Heister1,2Carmen Tîlmaciu3Emmanuel Flahaut3B. Soula3S. Ravi P. Silva2Johnjoe McFadden1Helen M. Coley1( )
Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU27XHUK
Nanoelectronics Centre, Advanced Technology InstituteUniversity of SurreyGuildfordGU27XHUK
Université de Toulouse, UPS/INP/CNRSInstitut Carnot CIRIMAT, 118 route de NarbonneToulouse, Cedex 931062France

Present address: Department of Biochemistry, University of Oxford, Oxford OX13QU, UK

Show Author Information

Graphical Abstract

Abstract

Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network.

Electronic Supplementary Material

Download File(s)
nr-5-4-223_ESM.pdf (466.8 KB)

References

1

Pantarotto, D.; Briand, J. M.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.

2

Kostarelos, K.; Lacerda1, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108–113.

3

Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A.; Kostarelos, K. Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2007, 2, 38–43.

4

Neves, V.; Heister, E.; Costa, S.; Tîlmaciu, C.; Borowiak-Palen, E.; Giusca1, C. E.; Flahaut, E.; Soula, B.; Coley, H. M.; McFadden, J.; et al. Uptake and release of double-walled carbon nanotubes by Mammalian cells. Adv. Funct. Mater. 2010, 20, 3272–3279.

5

Kam, N. W. S.; Liu, Z.; Dai, H. J. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew Chem. Int. Ed. 2006, 45, 577–581.

6

Jin, H.; Heller, D. A.; Sharma, R.; Strano, M. S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: Single particle tracking and a generic uptake model for nanoparticles. ACS Nano 2009, 3, 149–158.

7

Wei, M. L.; Bonzelius, R.; Scully, R. M.; Kelly, R. B.; Herman, G. A. GLUT4 and transferrin receptor are differentially sorted along the endocytic pathway in CHO cells. J. Cell Biol. 1998, 140, 565–575.

8

Connolly, C. N.; Futter, C. E, ; Gibson, A.; Hopkins, C. R.; Cutler, D. F. Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J. Cell Biol. 1994, 127, 641–652.

9

Yamashiro, D. J.; Tycko, B.; Fluss, S. R.; Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 1984, 37, 789–800.

10

Mullock, B. M.; Bright, N. A.; Fearon, C. W.; Gray, S. R.; Luzio, J. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J. Cell Biol. 1998, 140, 591–601.

11

Bucci, C.; Parton, R. G.; Mather, I. H.; Stunnenberg, H.; Simons, K.; Hoflack, B.; Zerial, M. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992, 70, 715–728.

12

Ren, M.; Xu, G.; Zeng, J.; Lemos-Chiarandini, C. D.; Adesnik, M.; Sabatini, D. D. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Natl. Acad. Sci. U. S. A. , 1998, 95, 6187–6192.

13

Jin, H.; Heller D. A.; Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008, 8, 1577–1585.

14

Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J. P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed. 2004, 43, 5242–5246.

15

Mu, Q.; Broughton, D. L.; Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009, 9, 4370–4375.

16

Yehia, H. N.; Draper, R. K.; Mikoryak, C.; Walker, E. K.; Bajaj, P.; Musselman, I. H.; Daigrepont, M. C. Dieckmann, G. R.; Pantano, P. Single-walled carbon nanotube interactions with HeLa cells. J. Nanobiotechnol. 2007, 5, 3155–3163.

17

Lacerda, L.; Pastorin, G.; Gathercole, D.; Buddle, J.; Prato, M.; Bianco, A.; Kostarelos, K. Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv. Mater. 2007, 19, 1780–1784.

18

Zhou, F.; Xing, D.; Wu, B.; Wu, S.; Ou, Z.; Chen, W. R. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 10, 1677–1681.

19

Saito, R.; Dresselhaus, G.; Dressehaus, M. S. Physical Properties of Carbon Nanotubes; London: Imperial College Press, 1998.

20

Strano, M. S.; Doorn, S. K.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E. Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett. 2003, 3, 1091–1096.

21

Doorn, S. K.; Heller, D. A.; Barone, P. W.; Usrey, M. L.; Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 2004, 78, 1147–1155.

22

Heister, E.; Lamprecht, C.; Neves, V.; Tîlmaciu, C.; Datas, L.; Flahaut, E.; Soula, B.; Hinterdorfer, P.; Coley, H. M.; Silva, S. R. P.; et al. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 2010, 4, 2615–2626.

23

Bartholomeusz, G.; Cherukuri, P.; Kingston, J.; Cognet, L.; Lemos, R.; Leeuw, T. K.; Gumbiner-Russo, L.; Weisman R. B.; Powis, G. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1alpha) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res 2009, 2, 279–291.

24

Wu, Y.; Phillips, J. A.; Liu, H.; Yang, R.; Tan, W. Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2008, 2, 2023–2028.

25

Aniento, F.; Emans, N.; Griffiths, G.; Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 1993, 123, 1373–1387.

26

Parton, R. G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007, 8, 185–194.

27

Luzio, J. P.; Mullock, B. M.; Pryor, P. R.; Lindsay, M. R.; James, D. E.; Piper, R. C. Relationship between endosomes and lysosomes. Biochem. Soc. Trans. 2001, 29, 476–480.

28

Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10, 623–635.

29

Ghosh, R. N.; Mallet, W. G.; Soe, T. T.; McGraw, T. E.; Maxfield, F. R. An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol. 1998, 142, 923–936.

30

Saraste, J.; Palade, G. E.; Farquhar, M. G. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 6425–6429.

31

Jones, A. T.; Clague, M. J. Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem. J. 1995, 311, 31–34.

32

Maxfield, F. R.; McGraw, T. E. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 2004, 5, 121–132.

33

Quon, M. J.; Chen, H.; Ing, B. L.; Liu, M. L.; Zarnowski, M. J.; Yonezawa, K.; Kasuga, M.; Cushman, S. W.; Taylor, S. I. Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol. Cell. Biol. 1995, 15, 5403–5411.

34

Clarke, J. F.; Young, P. W.; Yonezawa, K.; Kasuga, M.; Holman, G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 1994, 300, 631–635.

35

Clague, M. J.; Thorpe, C.; Jones, A. T. Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett. 1995, 367, 272–274.

36

Li, G.; D'Souza-Schorey, C.; Barbieri, M. A.; Roberts, R. L.; Klippel, A.; Williams, L. T.; Stahl P. D. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 10207–10211.

37

Brown, W. J.; DeWald, D. B.; Emr, S. D.; Plutner, H.; Balch, W. E. Role for phosphatidylinositol 3-kinase in the sorting and transport of newly synthesized lysosomal enzymes in mammalian cells. J. Cell Biol. 1995, 130, 781–796.

38

Davidson, H. W. Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes. J. Cell Biol. 1995, 130, 797–805.

39

Cardone, M.; Mostov, K. Wortmannin inhibits transcytosis of dimeric IgA by the polymeric immunoglobulin receptor. FEBS Lett. 1995, 376, 74–76.

40

Blommaart, E. F. C.; Krause, U.; Schellens, J. P. M.; Vreeling-Sindelarova, H.; Meijer, A. J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 1997, 243, 240–246.

41

Seglen, P. O.; Gordon, P. B. 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 1982, 79, 1889–1892.

42

Flahaut, E.; Bacsa, R.; Peigney, A.; Laurent, C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 2003, 1442–1443.

43

Heister, E.; Nevesa, V.; Tîlmaciub, C.; Lipertc, K.; Beltrána, V. S.; Coleya, H. M.; Silvad, S. R. P.; McFaddena, J. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009, 47, 2152–2160.

Nano Research
Pages 223-234
Cite this article:
Neves V, Gerondopoulos A, Heister E, et al. Cellular Localization, Accumulation and Trafficking of Double-Walled Carbon Nanotubes in Human Prostate Cancer Cells. Nano Research, 2012, 5(4): 223-234. https://doi.org/10.1007/s12274-012-0202-9

614

Views

15

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 27 September 2011
Revised: 05 January 2012
Accepted: 08 January 2012
Published: 22 February 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return