AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photocatalytic, Recyclable CdS Nanoparticle–Carbon Nanotube Hybrid Sponges

Hongbian Li1,Xuchun Gui2Chunyan Ji1Peixu Li3Zhen Li3Luhui Zhang1Enzheng Shi1Ke Zhu3Jinquan Wei3Kunlin Wang3Hongwei Zhu3Dehai Wu3Anyuan Cao1( )
Department of Advanced Materials and Nanotechnology, College of EngineeringPeking UniversityBeijing100871China
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and EngineeringSun Yat-Sen UniversityGuangzhou510275China
Key Laboratory for Advanced Materials Processing Technology and Department of Mechanical EngineeringTsinghua UniversityBeijing100084China

Present address: National Center for Nanoscience and Technology, Beijing 100190, China

Show Author Information

Graphical Abstract

Abstract

Semiconducting nanoparticles with lower bandgap (e.g., CdS) are alternative photocatalysts to TiO2, since they have a potentially wider range light of absorption and improved catalytic efficiency. However, they must be securely anchored on a porous substrate for practical applications. Here, we report a hybrid porous photocatalyst fabricated by grafting 4–6 nm diameter CdS nanoparticles uniformly throughout the entire macroporous structure of a three-dimensional carbon nanotube (CNT) sponge. The unique feature of our structure is that only the CdS nanoparticles grafted on the outside surface are active in photocatalysis, while other nanoparticles are stored inside the sponge in the fresh state for use when the catalyst is recycled. Our CdS–CNT hybrid sponges show high efficiency in removing organic contaminants from water. Spectroscopic measurements show that the hybrid sponges are multifunctional, simultaneously performing organic molecular adsorption (using the inter-CNT spacing), and photocatalytic decomposition (by the CdS nanoparticles grafted on the surface), both of which contribute to water purification. Furthermore, the surface part of the sponges can be stripped off to expose inner nanoparticles for use when the catalyst is recycled, without performance degradation.

Electronic Supplementary Material

Download File(s)
nr-5-4-265_ESM.pdf (242.2 KB)

References

1

Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.

2

Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.

3

Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C–Photochem. Rev. 2008, 9, 1–12.

4

Guo, C. S.; Ge, M.; Liu, L.; Gao, G. D.; Feng, Y. C.; Wang, Y. Q. Directed synthesis of mesoporous TiO2 microspheres: Catalysts and their photocatalysis for bisphenol degradation. Environ. Sci. Technol. 2010, 44, 419–425.

5

Pan, J. H.; Dou, H. Q.; Xiong, Z. G.; Xu, C.; Ma, J. Z.; Zhao, X. S. Porous photocatalysts for advanced water purifications. J. Mater. Chem. 2010, 20, 4512–4528.

6

Liu, Z. Y.; Bai, H. W.; Sun, D. R. Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification. Appl. Catal. B–Environ. 2011, 104, 234–238.

7

Xiong, Z. G.; Dou, H. Q.; Pan, J. H.; Ma, J. Z.; Xu, C.; Zhao, X. S. Synthesis of mesoporous anatase TiO2 with a combined template method and photocatalysis. CrystEngComm 2010, 12, 3455–3457.

8

Xiong, S. L.; Xi, B. J.; Qian, Y. T. CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic properties. J. Phys. Chem. C 2010, 114, 14029–14035.

9

Miao, J. J.; Ren, T.; Dong, L.; Zhu, J. J.; Chen, H. Y. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. Small 2005, 1, 802–805.

10

Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.

11

Xiao, Y. T.; Xu, S. S.; Du, Y. C.; Shiang, F. Q. Progress of novel TiO2 photocatalytic separation. J. Inorg. Mater. 2011, 26, 337–346.

12

Wang, Q.; Chen, G.; Zhou, C.; Jin, R. C.; Wang, L. Sacrificial template method for the synthesis of CdS nanosponges and their photocatalytic properties. J. Alloy. Compd. 2010, 503, 485–489.

13

Ji, K. H.; Jang, D. M.; Cho, Y. J.; Myung, Y.; Kim, H. S.; Kim, Y.; Park, J. Comparative photocatalytic ability of nanocrystal–carbon nanotube and TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 2009, 113, 19966–19972.

14

Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

15

Li, H. B.; Gui, X. C.; Zhang, L. H.; Ji, C. Y.; Zhang, Y. C.; Sun, P. Z.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Cao, A. Y. Enhanced transport of nanoparticles across a porous nanotube sponge. Adv. Funct. Mater. 2011, 21, 3439–3445.

16

Hu, L. B.; Zhao, Y. L.; Ryu, K. M.; Zhou, C. W.; Stoddart, J. F.; Grüner, G. Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv. Mater. 2008, 20, 939–946.

17

Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17, 2458–2463.

18

Li, X. L.; Jia, Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Cao, A. Y. Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films. ACS Nano 2010, 4, 2142–2148.

19

Apte, S. K.; Garaje, S. N.; Mane, G. P.; Vinu, A.; Naik, S. D.; Amalnerkar, D. P.; Kale, B. B. A facile template-free approach for the large-scale solid-phase synthesis of CdS nanostructures and their excellent photocatalytic performance. Small 2011, 7, 957–964.

20

Kim, Y. K.; Park, H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water. Energy Environ. Sci. 2011, 4, 685–694.

21

Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 2007, 111, 2447–2458.

22

Li, W. J.; Li, D. Z.; Meng, S. G.; Chen, W.; Fu, X. Z.; Shao, Y. Novel approach to enhance photosensitized degradation of Rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. Environ. Sci. Technol. 2011, 45, 2987–2993.

Nano Research
Pages 265-271
Cite this article:
Li H, Gui X, Ji C, et al. Photocatalytic, Recyclable CdS Nanoparticle–Carbon Nanotube Hybrid Sponges. Nano Research, 2012, 5(4): 265-271. https://doi.org/10.1007/s12274-012-0206-5

507

Views

36

Crossref

N/A

Web of Science

38

Scopus

0

CSCD

Altmetrics

Received: 25 November 2011
Revised: 04 February 2012
Accepted: 08 February 2012
Published: 07 March 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return