AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Different Growth Behaviors of Ambient Pressure Chemical Vapor Deposition Graphene on Ni(111) and Ni Films: A Scanning Tunneling Microscopy Study

Yanfeng Zhang1,2,§( )Teng Gao2,§Shubao Xie2,§Boya Dai2Lei Fu2Yabo Gao2Yubin Chen2Mengxi Liu2Zhongfan Liu2( )
Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
Center for Nanochemistry (CNC) Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Graphene growth on the same metal substrate with different crystal morphologies, such as single crystalline and polycrystalline, may involve different mechanisms. We deal with this issue by preparing graphene on single crystal Ni(111) and on ~300 nm thick Ni films on SiO2 using an ambient pressure chemical vapor deposition (APCVD) method, and analyze the different growth behaviors for different growth parameters by atomically-resolved scanning tunneling microscopy (STM) and complementary macroscopic analysis methods. Interestingly, we obtained monolayer graphene on Ni(111), and multilayer graphene on Ni films under the same growth conditions. Based on the experimental results, it is proposed that the graphene growth on Ni(111) is strongly templated by the Ni(111) lattice due to the strong Ni-C interactions, leading to monolayer graphene growth. Multilayer graphene flakes formed on polycrystalline Ni films are usually stacked with deviations from the Bernal stacking type and show small rotations among the carbon layers. Considering the different substrate features, the inevitable grain boundaries on polycrystalline Ni films are considered to serve as the growth fronts for bilayer and even multilayer graphene.

Electronic Supplementary Material

Download File(s)
nr-5-6-402_ESM.pdf (730.1 KB)

References

1

Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.

2

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

3

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

4

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

5

Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

6

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

7

Lopez, G. A.; Mittemeijer, E. The solubility of C in solid Cu. Scr. Mater. 2004, 51, 1–5.

8

Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

9

Lander, J. J.; Kern, H. E.; Beach, A. L. Solubility and diffusion coefficient of carbon in nickel-Reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 1952, 23, 1305–1309.

10

Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-Noble metals. Nano Lett. 2011, 11, 297–303.

11

Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C. A.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.

12

De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. W.; Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotech. 2009, 8, 135–138.

13

Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.

14

Eizenberg, M.; Blakely, J. M. Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228–236.

15

Backer, R.; Horz, G. Scanning tunneling microscopic investigations of the adsorption and segregation of carbon and sulfur on nickel single crystal surfaces. Anal. Chem. 1995, 353, 757–761.

16

Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 1997, 374, 61–64.

17

Gao, M.; Pan, Y.; Zhang, C. D.; Hu, H.; Yang, R.; Lu, H. L.; Cai, J. M.; Du, S. X.; Liu, F.; Gao, H. J. Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 2010, 96, 053109.

18

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

19

Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721.

20

Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L.; Liu, Z. F. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.

21

Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

22

Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H., et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

23

Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597–605.

24

Kelly, B. T. The thermal expansion coefficient of graphite parallel to the basal planes. Carbon 1972, 10, 429–433.

25

Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

26

Jiang, J. W.; Wang, J. S.; Li, B. W. Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach. Phys. Rev. B 2009, 80, 205429.

27

Dedkov, Y. S.; Fonin, M. Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 2010, 12, 125004.

28

Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. Y. Rotational disorder in few-layer graphene films on 6H-SiC(000-1): A scanning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.

29

Huang, H.; Wong, S. L.; Tin, C. C.; Luo, Z. Q.; Shen, Z. X.; Chen, W.; Wee, A. T. S. Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 2011, 110, 014308.

30

Pong, W. T.; Durkan, C. A. Review and outlook for an anomaly of scanning tunneling microscopy (STM): Superlattices on graphite. J. Phys. D: Appl. Phys. 2005, 38, R329–355.

31

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

Nano Research
Pages 402-411
Cite this article:
Zhang Y, Gao T, Xie S, et al. Different Growth Behaviors of Ambient Pressure Chemical Vapor Deposition Graphene on Ni(111) and Ni Films: A Scanning Tunneling Microscopy Study. Nano Research, 2012, 5(6): 402-411. https://doi.org/10.1007/s12274-012-0221-6

616

Views

57

Crossref

N/A

Web of Science

62

Scopus

0

CSCD

Altmetrics

Received: 24 March 2012
Revised: 23 April 2012
Accepted: 24 April 2012
Published: 16 May 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return