AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reshaping the Tips of ZnO Nanowires by Pulsed Laser Irradiation

Xue Wang1,2,§Yong Ding1,§Dajun Yuan3Jung-Il Hong1Yan Liu1C. P. Wong1Chenguo Hu2Zhong Lin Wang1( )
School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
Department of Applied Physics Chongqing University Chongqing 400044 China
Woodruff School of Mechanical Engineering Georgia Institute of TechnologyAtlantaGeorgia 30332–0405 USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Vertically aligned ZnO nanowires have been synthesized by a hydrothermal method. After being irradiated by a short laser pulse, the tips of the as-synthesized ZnO nanowires can be tailored into a spherical shape. Transmission electron microscopy revealed that the spherical tip is a single-crystalline piece connected to the body of the ZnO nanowire, and that the center of the sphere is hollow. The growth mechanism of the hollow ZnO nanospheres is proposed to involve laser-induced ZnO evaporation immediately followed by re-nucleation in a temperature gradient environment. The laser-irradiated ZnO nanowire array shows hydrophobic properties while the original ZnO nanowire array shows hydrophilicity. The as-grown ZnO nanowire arrays with hollow spherical tips can serve as templates to grow ZnO nanowire arrays with very fine tips, which may be a good candidate material for use in field emission and scanning probe microscopy.

References

1

Sun, T. L.; Feng, L.; Gao, X. F, Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652.

2

Autumn, K. Gecko adhesion: Structure, function, and applications. MRS Bull. 2007, 32, 473–478.

3

Kim, T. I.; Jeong, H. E.; Suh, K. Y.; Lee, H. H. Stooped nanohairs: Geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281.

4

Kim, T. I.; Suh, K. Y. Unidirectional wetting and spreading on stooped polymer nanohairs. Soft Matter 2009, 5, 4131–4135.

5

Chu, K. H.; Xiao, R.; Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 2010, 9, 413–417.

6

Cheng, C. L.; Chao, S. H.; Chen, Y. F. Enhancement of field emission in nanotip-decorated ZnO nanobottles. J. Cryst. Growth 2009, 311, 4381–4384.

7

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

8

Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

9

Lupan, O.; Pauporte, T.; Viana, B. Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv. Mater. 2010, 22, 3298–3302.

10

Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

11

Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

12

Xi, Y.; Song, J. H.; Xu, S.; Yang, R. S.; Gao, Z. Y.; Hu, C. G.; Wang, Z. L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 2009, 19, 9260–9264.

13

Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts. Science 2004, 303, 1348–1351.

14

Matsumoto, K.; Saito, N.; Mitate, T.; Hojo, J.; Inada, M.; Haneda, H. Surface polarity determination of ZnO spherical particles synthesized via solvothermal route. Cryst. Growth Des. 2009, 9, 5014–5016.

15

Shen, Y.; Hong, J. I.; Xu, S.; Lin, S. S.; Fang, H.; Zhang, S.; Ding, Y.; Snyder, R. L.; Wang, Z. L. A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition. Adv. Funct. Mater. 2010, 20, 703–707.

16

Xu, H. J.; Hou, Y. M.; Gao, J. Y.; Zhu, H. C.; Zhu, R.; Sun, Y. H.; Zhu, X. L.; Wang, Y. Z.; Wang, X. W.; Yu, D. P. Regrowth of template ZnO nanowires for the underlying catalyst-free growth mechanism. Cryst. Growth Des. 2011, 11, 2135–2141.

17

Elias, J.; Levy-Clement, C.; Bechelany, M.; Michler, J.; Wang, G. Y.; Wang, Z.; Philippe, L. Hollow urchin-like ZnO thin films by electrochemical deposition. Adv. Mater. 2010, 22, 1607–1612.

18

Zeng, H. B.; Cai, W. P.; Liu, P. S.; Xu, X. X.; Zhou, H. J.; Klingshirn, C.; Kalt, H. ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2008, 2, 1661–1670.

19

Liu, J.; Chen, X. L.; Wang, W. J.; Huang, Q. S.; Wang, G.; Zhu, K. X.; Guo, J. G. Large scale synthesis of porous ZnO hollow structures with tunable diameters and shell thicknesses. Mater. Lett. 2009, 63, 2221–2223.

20

Park, J. Y.; Choi, S. W.; Kim, S. S. A synthesis and sensing application of hollow ZnO nanofibers with uniform wall thicknesses grown using polymer templates. Nanotechnology 2010, 21, 475601.

21

Zhang, Z. Y.; Li, X. H.; Wang, C. H.; Wei, L. M.; Liu, Y. C.; Shao, C. L. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C 2009, 113, 19397–19403.

22

Gao, Y. F.; Nagai, M.; Chang, T. C.; Shyue, J. J. Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 2007, 7, 2467–2471.

23

Maeng, J.; Heo, S.; Jo, G.; Choe, M.; Kim, S.; Hwang, H.; Lee, T. The effect of excimer laser annealing on ZnO nanowires and their field effect transistors. Nanotechnology 2009, 20, 095203.

24

Szorenyi, T.; Laude, L. D.; Bertoti, I.; Kantor, Z.; Geretovszky, Z. Excimer-laser processing of indium-tin-oxide films: an optical investigation. J. Appl. Phys. 1995, 78, 6211–6219.

25

Oh, M. S.; Hwang, D. K.; Lim, J. H.; Choi, Y. S.; Park, S. J. Current-driven hydrogen incorporation in zinc oxide. Appl. Phys. Lett. 2007, 91, 212102.

26

Leuchtner, R. E. Mass spectrometry and photoionization studies of the ablation of ZnO: Ions, neutrals, and Rydbergs. Appl. Surf. Sci. 1998, 127, 626–632.

27

Kwak, G.; Seol, M.; Tak, Y.; Yong, K. Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation. J. Phys. Chem. C 2009, 113, 12085–12089.

28

Lee, S.; Kim, W.; Yong, K. Overcoming the water vulnerability of electronic devices: A highly water-resistant ZnO nanodevice with multifunctionality. Adv. Mater. 2011, 23, 4398–4402.

29

Kwak, G.; Jung, S.; Yong, K. Multifunctional transparent ZnO nanorod films. Nanotechnology 2011, 22, 115705.

30

Jiang, X.; Jia, C. L.; Szyszka, B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Appl. Phys. Lett. 2002, 80, 3090–3092.

31

Kim, D. S.; Goesele, U.; Zacharias, M. Surface-diffusion induced growth of ZnO nanowires. J. Cryst. Growth 2009, 311, 3216–3219.

32

Fan, F. R.; Ding, Y.; Liu, D. Y.; Tian, Z. Q.; Wang, Z. L. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals. J. Am. Chem. Soc. 2009, 131, 12036–12037.

Nano Research
Pages 412-420
Cite this article:
Wang X, Ding Y, Yuan D, et al. Reshaping the Tips of ZnO Nanowires by Pulsed Laser Irradiation. Nano Research, 2012, 5(6): 412-420. https://doi.org/10.1007/s12274-012-0222-5

474

Views

20

Crossref

N/A

Web of Science

20

Scopus

3

CSCD

Altmetrics

Received: 03 March 2012
Revised: 03 April 2012
Accepted: 24 April 2012
Published: 18 May 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return