AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A Facile Tool for the Characterization of Two-Dimensional Materials Grown by Chemical Vapor Deposition

Mario Hofmann1Yong Cheol Shin2Ya-Ping Hsieh3Mildred S. Dresselhaus4Jing Kong1( )
Massachusetts Institute of Technology Department of Electrical Engineering and Computer ScienceCambridgeMA 02139-4307 USA
Massachusetts Institute of Technology Department of Materials Science and EngineeringCambridgeMA 02139-4307 USA
Chung-Cheng University Graduate Institute of Opto-Mechatronics
Massachusetts Institute of Technology Department of PhysicsCambridgeMA 02139-4307 USA
Show Author Information

Graphical Abstract

Abstract

The metrology of two-dimensional (2D) materials such as graphene, boron nitride or molybdenum disulfide grown by chemical vapor deposition (CVD) is critical for the optimization of their synthesis. We demonstrate the use of film-induced frustrated etching (FIFE) as a facile, scalable method to reveal and quantify structural defects in continuous thin sheets. The sensitivity of the analysis technique to intentionally induced lattice defects in graphene compares favorably to the sensitivity of Raman spectroscopy. A strong correlation between the measured defectiveness and the maximum carrier mobility in graphene emphasizes the importance of the technique for growth optimization. Due to its ease and widespread availability, we anticipate that FIFE will find wide application in the characterization of CVD-synthesized 2D materials.

Electronic Supplementary Material

Download File(s)
nr-5-7-504_ESM.pdf (258.5 KB)

References

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Mas-Ballesté, R.; Gomez-Navarró, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

3

Chen, J. -H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

4

Mohanty, N.; Fahrenholtz, M.; Nagaraja, A.; Boyle, D.; Berry, V. Impermeable graphenic encasement of bacteria. Nano Lett. 2011, 11, 1270–1275.

5

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

6

Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. -Y.; Dresselhaus, M. S.; Li, L. -J.; Kong, J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

7

Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

8

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

9

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

10

Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

11

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

12

Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

13

Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 2011, 11, 2259–2263.

14

Radisavljevic, B; Radenovic, A; Brivio, J.; Giacometti, J.; Kis, A. Single-layer MoS transistors. Nat. Nanotechnol. 2011, 6, 147–150.

15

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

16

Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

17

Cheng, Z. G.; Zhou, Q. Y.; Wang, C. X.; Wang C.; Li, Q.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767–771.

18

Barry, I. E.; Eason, R. W.; Cook, G. Light-induced frustration of etching in Fe-doped LiNbO3. Appl. Surf. Sci. 1999, 143, 328–331.

19

Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.

20

Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321–1327.

21

Wang, H.; Wang, G. Z.; Bao, P. F.; Yang, S. L.; Zhu, W.; Xie, X.; Zhang, W. -J. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 2012, 134, 3627–3630.

22

Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W.; Fu, L. F.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

23

Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.

24

Tracz, A.; Wegner, G.; Rabe, J. P. Scanning tunneling microscopy study of graphite oxidation in ozone–air mixtures. Langmuir 2003, 19, 6807–6812.

25

Tao, H. H.; Moser, J.; Alzina, F.; Wang, Q.; Sotomayor-Torres, C. M. The morphology of graphene sheets treated in an ozone generator. J. Phys. Chem. C 2011, 115, 18257–18260.

26

Suk, M. E.; Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590–1594.

27

Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193.

28

Boyd, G. T.; Yu, Z. H.; Shen, Y. R. Photoinduced luminescence from the noble-metals and its enhancement on roughened surfaces. Phys. Rev. B 1986, 33, 7923–7936.

29

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

30

Alzina, F.; Tao, H.; Moser, J.; Garcia, Y.; Bachtold, A.; Sotomayor-Torres, C. M. Probing the electron–phonon coupling in ozone-doped graphene by Raman spectroscopy. Phys Rev B 2010, 82, 075422.

31

Lin, Y. -C.; Jin, C.; Lee, J. -C.; Jen, S. -F.; Suenaga, K.; Chiu, P. -W. Clean transfer of graphene for isolation and suspension. ACS Nano 2011, 5, 2362–2368.

Nano Research
Pages 504-511
Cite this article:
Hofmann M, Shin YC, Hsieh Y-P, et al. A Facile Tool for the Characterization of Two-Dimensional Materials Grown by Chemical Vapor Deposition. Nano Research, 2012, 5(7): 504-511. https://doi.org/10.1007/s12274-012-0227-0

676

Views

27

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 12 March 2012
Revised: 29 April 2012
Accepted: 02 May 2012
Published: 18 July 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return