AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Formation of CdSe/CdS/ZnS–Au/SiO2 Dual-Yolk/Shell Nanostructures through a Trojan-Type Inside-Out Etching Strategy

Ching-Mao Huang1Shih-Hsun Cheng1U-Ser Jeng2Chung-Shi Yang3Leu-Wei Lo1( )
Division of Medical EngineeringZhunan Health Research InstitutesZhunan, Miaoli350
Hsinchu Synchrotron Radiation Research CenterHsinchu300
Center for Nanomedicine ResearcherZhunan Health Research InstitutesZhunan, Miaoli350
Show Author Information

Graphical Abstract

Abstract

In this work we report the development of a rapid and selective etching strategy to synthesize a dual-yolk/shell nanostructure consisting of semiconductor–metal hybrid nanocrystals and hollow SiO2 for the first time. By utilizing CdSe/CdS/ZnS quantum dot (CSSQD)/SiO2 core/shell nanoparticles as the template and aurate hydroxyl complexes [Au(OH)4] as the Trojan-type inside-out etching agent, rapid formation of CSSQD–Au hybrid nanocrystal dual-yolk and SiO2 hollow shell occur during the reduction of Au(OH)4 on CSSQD cores accompanied by localized hydroxyl-liberation from Au(OH)4 at the interface between silica and CSSQD. Unlike surface-protected etching strategies, a selective as well as directional etching takes place from the silica internal surface and the thickness of the silica shell can be controlled by varying the etching time. Moreover, the size of attached Au nanoclusters can be tuned by subsequent light exposure. Consequently, the resulting platform offers a number of attractive features: (1) a new, directional, and rapid etching approach toward the formation of hollow silica nanostructures in solution; (2) semiconductor/metal hybrid nanocrystals as yolks within hollow silica nanospheres have been reported for the first time; and (3) the ability, through light exposure, to tune the size of the attached metal nanoclusters on the encapsulated CSSQD within the hollow silica nanospheres. Most importantly, the synthetic method has the capability of introducing additional guest species (e.g. metals) into a primary yolk (e.g. semiconductor) of hollow silica nanoparticles, potentially leading to many promising applications in fuel cells, photocatalysis, bioimaging, and cancer therapy.

References

1

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

2

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

3

Cheng, K.; Sun, S. H. Recent advances in syntheses and therapeutic applications of multifunctional porous hollow nanoparticles. Nano Today 2010, 5, 183–196.

4

Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 2006, 45, 7063–7066.

5

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

6

Chen, Z.; Cui, Z. M.; Niu, F.; Jiang, L.; Song, W. G. Pd nanoparticles in silica hollow spheres with mesoporous walls: A nanoreactor with extremely high activity. Chem. Commun. 2010, 46, 6524–6526.

7

Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H. Ni@SiO2 yolk–shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239–1246.

8

Park, J. C.; Lee, H. J.; Kim, J. Y.; Park, K. H.; Song, H. Catalytic hydrogen transfer of ketones over Ni@SiO2 yolk–shell nanocatalysts with tiny metal cores. J. Phys. Chem. C 2010, 114, 6381–6388.

9

Wu, S. H.; Tseng, C. T.; Lin, Y. S.; Lin, C. H.; Hung, Y.; Mou, C. Y. Catalytic nano-rattle of Au@hollow silica: Towards a poison-resistant nanocatalyst. J. Mater. Chem. 2011, 21, 789–794.

10

Gao, J. H.; Liang, G. L.; Zhang, B.; Kuang, Y.; Zhang, X. X.; Xu, B. FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 2007, 129, 1428–1433.

11

Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. Multifunctional yolk–shell nanoparticles: A potential MRI contrast and anticancer agent. J. Am. Chem. Soc. 2008, 130, 11828–11833.

12

Zhao, W. R.; Chen, H. R.; Li, Y. S.; Li, L.; Lang, M. D.; Shi, J. L. Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv. Funct. Mater. 2008, 18, 2780–2788.

13

Li, L. L.; Tang, F. Q.; Liu, H. Y.; Liu, T. L.; Hao, N. J.; Chen, D.; Teng, X.; He, J. Q. In vivo delivery of silica nanorattle encapsulated Docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 2010, 4, 6874–6882.

14

Lu, Y.; Zhao, Y.; Yu, L.; Dong, L.; Shi, C.; Hu, M. J.; Xu, Y. J.; Wen, L. P.; Yu, S. H. Hydrophilic Co@Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Adv. Mater. 2010, 22, 1407–1411.

15

Zhu, Y. F.; Ikoma, T.; Hanagata, N.; Kaskel, S. Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 2010, 6, 471–478.

16

Hu, S. H.; Chen, Y. Y.; Liu, T. C.; Tung, T. H.; Liu, D. M.; Chen, S. Y. Remotely nano-rupturable yolk/shell capsules for magnetically-triggered drug release. Chem. Commun. 2011, 47, 1776–1778.

17

Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891–895.

18

Park, J. C.; Song, H. Metal@silica yolk–shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.

19

Wang, T. T.; Chai, F.; Wang, C. G.; Li, L.; Liu, H. Y.; Zhang, L. Y.; Su, Z. M.; Liao, Y. Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. J. Colloid Interf. Sci. 2011, 358, 109–115.

20

Ha, T. L.; Shin, J.; Lim, C. W.; Lee, I. S. Seed-mediated growth of gold inside hollow silica nanospheres for sensing peroxide and glucose concentrations. Chem-Asian J. 2012, 7, 36–39.

21

Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.

22

Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

23

Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507.

24

Wu, X. J.; Xu, D. S. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 2009, 131, 2774–2775.

25

Wu, X. J.; Xu, D. S. Soft template synthesis of yolk/silica shell particles. Adv. Mater. 2010, 22, 1516–1520.

26

Park, S. J.; Kim, Y. J.; Park, S. J. Size-dependent shape evolution of silica nanoparticles into hollow structures. Langmuir 2008, 24, 12134–12137.

27

Zhang, T. R.; Ge, J. P.; Hu, Y. X.; Zhang, Q.; Aloni, S.; Yin, Y. D. Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angew. Chem., Int. Ed. 2008, 47, 5806–5811.

28

Chen, D.; Li, L. L.; Tang, F. Q.; Qi, S. O. Facile and scalable synthesis of tailored silica "nanorattle" structures. Adv. Mater. 2009, 21, 3804–3807.

29

Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett. 2008, 8, 2867–2871.

30

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.

31

Zhang, Q.; Lee, I.; Ge, J. P.; Zaera, F.; Yin, Y. D. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts. Adv. Funct. Mater. 2010, 20, 2201–2214.

32

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

33

Yang, J.; Peng, J. J.; Zhang, Q. B.; Peng, F.; Wang, H. J.; Yu, H. One-step synthesis and characterization of gold–hollow PbSx hybrid nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 3991–3995.

34

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

35

Zeng, J.; Huang, J. L.; Liu, C.; Wu, C. H.; Lin, Y.; Wang, X. P.; Zhang, S. Y.; Hou, J. G.; Xia, Y. N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mater. 2010, 22, 1936–1940.

36

Dukovic, G.; Merkle, M. G.; Nelson, J. H.; Hughes, S. M.; Alivisatos, A. P. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv. Mater. 2008, 20, 4306–4311.

37

Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885–4889.

38

Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.

39

Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semi-conductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855–863.

40

Yang, J.; Ying, J. Y. A General phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–689.

41

Steiner, D.; Mokari, T.; Banin, U.; Millo, O. Electronic structure of metal–semiconductor nanojunctions in gold CdSe nanodumbbells. Phys. Rev. Lett. 2005, 95, 056805.

42

Selvan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 2007, 46, 2448–2452.

43

Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U. Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett. 2008, 8, 637–641.

44

Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U. Growth of photocatalytic CdSe–Pt nanorods and nanonets. Adv. Mater. 2008, 20, 4312–4317.

45

Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C., et al. Charge transfer and retention in directly coupled Au–CdSe nanohybrids. Nano Res. 2012, 5, 88–98.

46

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 4782–4786.

47

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

48

Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

49

Zhang, B. B.; Gong, X. Q.; Hao, L. J.; Cheng, J.; Han, Y.; Chang, J. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection. Nanotechnology 2008, 19, 465604.

50

Mahalingam, V.; Onclin, S.; Peter, M.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions. Langmuir 2004, 20, 11756–11762.

51

Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

52

Moreau, F.; Bond, G. C.; Taylor, A. O. Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents. J. Catal. 2005, 231, 105–114.

53

Huang, C. M.; Wei, K. H.; Jeng, U. S.; Liang, K. S. Structural evolution of poly(styrene-b-4-vinylpyridine) diblock copolymer/gold nanoparticle mixtures from solution to solid state. Macromolecules 2007, 40, 5067–5074.

54

Saunders, A. E.; Popov, I.; Banin, U. Synthesis of hybrid CdS–Au colloidal nanostructures. J. Phys. Chem. B 2006, 110, 25421–25429.

55

Carbone, L.; Jakab, A.; Khalavka, Y.; Sonnichsen, C. Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. Nano Lett. 2009, 9, 3710–3714.

56

Feng, Z. G.; Li, Y. S.; Niu, D. C.; Li, L.; Zhao, W. R.; Chen, H. R.; Li, L.; Gao, J. H.; Ruan, M. L.; Shi, J. L. A facile route to hollow nanospheres of mesoporous silica with tunable size. Chem. Commun. 2008, 2629–2631.

Nano Research
Pages 654-666
Cite this article:
Huang C-M, Cheng S-H, Jeng U-S, et al. Formation of CdSe/CdS/ZnS–Au/SiO2 Dual-Yolk/Shell Nanostructures through a Trojan-Type Inside-Out Etching Strategy. Nano Research, 2012, 5(9): 654-666. https://doi.org/10.1007/s12274-012-0229-y

700

Views

19

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 28 February 2012
Revised: 25 April 2012
Accepted: 30 April 2012
Published: 16 August 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return