AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Easy Access to Selective Binding and Recyclable Separation of Histidine-Tagged Proteins Using Ni2+-Decorated Superparamagnetic Nanoparticles

Zhen Liu1,2Meng Li1,2Zhenhua Li1,2Fang Pu1Jinsong Ren1( )Xiaogang Qu1
State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun 130022 China
Graduate School of the Chinese Academy of ScienceBeijing 100039 China
Show Author Information

Graphical Abstract

Abstract

The development of simple techniques for the separation and purification of recombinant proteins plays an important role in many of the advancements made in biotechnology and nanotechnology. Herein, we report an easy method for the efficient purification of polyhistidine affinity-tagged (His-tagged) proteins by using Ni2+-decorated superparamagnetic particles. Monodisperse Ni0.3Fe0.7Fe2O4 nanoparticles were prepared via a facile and economical one-pot hydrothermal process. Owing to the characteristic molecular recognition ability between nickel(Ⅱ) ions and the polyhistidine affinity tag, the nanoparticles could be successfully employed to selectively bind and separate His-tagged cyan fluorescent protein (CFP) from an E. coli cell lysate in a recyclable process. Moreover, by changing the divalent metal precursors, various other metal-decorated magnetic nanoparticles can be obtained. This approach offers the possibility of constructing metal-decorated nanoparticles through a simple method and will be highly beneficial in further applications of nanoparticle-based technologies.

Electronic Supplementary Material

Download File(s)
nr-5-7-450_ESM.pdf (530.7 KB)

References

1

Yang, H.; Xia, Y. N. Bionanotechnology: Enabling bio-medical research with nanomaterials. Adv. Mater. 2007, 19, 3085-3087.

2

Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598-599.

3

Xu, F.; Wang, Y. J.; Wang, X. D.; Zhang, Y. H.; Tang, Y.; Yang, P. Y. A novel hierarchical nanozeolite composite as sorbent for protein separation in immobilized metal-ion affinity chromatography. Adv. Mater. 2003, 15, 1751-1753.

4

Nam, J. M.; Han, S. W.; Lee, K. B.; Liu, X. G.; Ratner, M. A.; Mirkin, C. A. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 2004, 43, 1246-1249.

5

Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519-7525.

6

Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097-1107.

7

Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222-1244.

8

Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532-2542.

9

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G.; Dai, H. J. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971-976.

10

Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248-1260.

11

Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 2008, 47, 5122-5135.

12

Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 2006, 128, 10658-10659.

13

Kim, J.; Piao, Y.; Lee, N.; Park, Y. I.; Lee, I. H.; Lee, J. H.; Paik, S. R.; Hyeon, T. Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. Adv. Mater. 2010, 22, 57-60.

14

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938-9939.

15

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 2004, 126, 3392-3393.

16

Lee, K. B.; Park, S.; Mirkin, C. A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem. Int. Ed. 2004, 43, 3048-3050.

17

Oh, B. K.; Park, S.; Millstone, J. E.; Lee, S. W.; Lee, K. B.; Mirkin, C. A. Separation of tricomponent protein mixtures with triblock nanorods. J. Am. Chem. Soc. 2006, 128, 11825-11829.

18

Bao, J.; Chen, W.; Liu, T. T.; Zhu, Y. L.; Jin, P. Y.; Wang, L. Y.; Liu, J. F.; Wei, Y. G.; Li, Y. D. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 2007, 1, 293-298.

19

Sen, T.; Sebastianelli, A.; Bruce, I. J. Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 2006, 128, 7130-7131.

20

Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 2012, 134, 1071-1077.

21

Liu, Z.; Li, M.; Yang, X. J.; Yin, M. L.; Ren, J. S.; Qu, X. G. The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system. Biomaterials 2011, 32, 4683-4690.

22

Xuan, S. H.; Wang, F.; Gong, X. L.; Kong, S. K.; Yu, J. C.; Leung, K. C. F. Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization. Chem. Commun. 2011, 2514-2516.

23

Lee, K. S.; Lee, I. S. Decoration of superparamagnetic iron oxide nanoparticles with Ni2+: Agent to bind and separate histidine-tagged proteins. Chem. Commun. 2008, 709-711.

24

Liu, Z.; Li, M.; Pu, F.; Ren, J. S.; Yang, X. J.; Qu, X. G. Hierarchical magnetic core-shell nanoarchitectures: Non-linker reagents synthetic route and applications in a biomolecule separation system. J. Mater. Chem. 2012, 22, 2935-2942.

25

Chun, J.; Seo, S. W.; Jung, G. Y.; Lee, J. Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 2011, 21, 6713-6717.

26

Cho, E. J.; Jung, S.; Lee, K.; Lee, H. J.; Nam, K. C.; Bae, H. J. Fluorescent receptor-immobilized silica-coated magnetic nanoparticles as a general binding agent for histidine-tagged proteins. Chem. Commun. 2010, 6557-6559.

27

Lee, K. S.; Woo, M. H.; Kim, H. S.; Lee, E. Y.; Lee, I. S. Synthesis of hybrid Fe3O4-silica-NiO superstructures and their application as magnetically separable high-performance biocatalysts. Chem. Commun. 2009, 3780-3782.

28

Fang, W. J.; Chen, X. L.; Zheng, N. F. Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins. J. Mater. Chem. 2010, 20, 8624-8630.

29

Woo, E.; Ponvel, K. M.; Ahn, I. S.; Lee, C. H. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of his-tagged enzymes. J. Mater. Chem. 2010, 20, 1511-1515.

30

Chang, W.; Tang, K. B.; Qi, Y. X.; Sheng, J.; Liu, Z. P. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 2010, 20, 1799-1805.

31

Cheng, W.; Tang, K. B.; Sheng, J. Highly water-soluble superparamagnetic ferrite colloidal spheres with tunable composition and size. Chem. Eur. J. 2010, 16, 3608-3612.

32

Zhang, Z.; Chen, H. H.; Xing, C. Y.; Guo, M. Y.; Xu, F. G.; Wang, X. D.; Gruber, H.; Zhang, B. L.; Tang, J. L. Sodium citrate: An universal reducing agent for reduction/decoration of graphene oxide with Au nanoparticles. Nano Res. 2011, 4, 599-611.

33

Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.

34

Xuan, S. H.; Wang, Y. X. J.; Yu, J. C.; Leung, K. C. F. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 2009, 21, 5079-5087.

35

Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate group. Angew. Chem. Int. Ed. 2009, 48, 5875-5879.

36

Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 2007, 46, 4342-4345.

37

McRae, S. R.; Brown, C. L.; Bushell, G. R. Rapid purification of EGFP, EYFP, and ECFP with high yield and purity. Protein Expres. Purif. 2005, 41, 121-127.

38

Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; Le Vot, S.; Chazal, R.; Macheboeuf, P.; Field, M. J.; Bourgeois, D.; Royant. A. Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield. Biochemistry 2009, 48, 10038-10046.

Nano Research
Pages 450-459
Cite this article:
Liu Z, Li M, Li Z, et al. Easy Access to Selective Binding and Recyclable Separation of Histidine-Tagged Proteins Using Ni2+-Decorated Superparamagnetic Nanoparticles. Nano Research, 2012, 5(7): 450-459. https://doi.org/10.1007/s12274-012-0230-5

669

Views

23

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 06 April 2012
Revised: 06 May 2012
Accepted: 15 May 2012
Published: 28 June 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return