AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanocomposites of CoO and a Mesoporous Carbon (CMK-3) as a High Performance Cathode Catalyst for Lithium-Oxygen Batteries

Bing Sun1Hao Liu1Paul Munroe2Hyojun Ahn3Guoxiu Wang1( )
Centre for Clean Energy Technology School of Chemistry and Forensic Science, University of TechnologySydneyNSW 2007 Australia
Electron Microscope Unit, The University of New South WalesSydneyNSW 2052 Australia
School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dongyJinju, Gyeongnam 660-701 Republic of Korea
Show Author Information

Graphical Abstract

Abstract

A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.

Electronic Supplementary Material

Download File(s)
nr-5-7-460_ESM.pdf (588.3 KB)

References

1

Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.

2

Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1-7.

3

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1-5.

4

Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390-1393.

5

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.

6

Wang, Y. G.; Zhou, H. S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 2010, 195, 358-361.

7

Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 2002, 149, A1190-A1195.

8

Fujinaga, T.; Sakura, S. Polarographic investigation of dissolved-oxygen in non-aqueous solvent. Bull. Chem. Soc. Jpn. 1974, 47, 2781-2786.

9

Sawyer, D. T.; Chlericato, G.; Angelis, C. T.; Nanni, E. J.; Tsuchiya, T. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 1982, 54, 1720-1724.

10

Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E. The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J. Electroanal. Chem. 1991, 297, 225-244.

11

Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C. 2009, 113, 20127-20134.

12

Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C. 2010, 114, 9178-9186.

13

Lu, Y. C.; Gasteiger, H. A.; Crumlin, E.; McGuire, R.; Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc. 2010, 157, A1016-A1025.

14

Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 2011, 50, 6351-6355.

15

Debart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177-1182.

16

Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4521-4524.

17

Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69-A72.

18

Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170-12171.

19

Ren, X. M.; Zhang, S. S.; Tran, D. T.; Read, J. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater Chem. 2011, 21, 10118-10125.

20

Thapa, A. K.; Ishihara, T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. J. Power Sources 2011, 196, 7016-7020.

21

Li, J. X.; Wang, N.; Zhao, Y.; Ding, Y. H.; Guan, L. H. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem. Commun. 2011, 13, 698-700.

22

Li, Y. L.; Wang, J. J.; Li, X. F.; Liu, J.; Geng, D. S.; Yang, J. L.; Li, R. Y.; Sun, X. L. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries. Electrochem. Commun. 2011, 13, 668-672.

23

Yoo, E.; Zhou, H. S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 2011, 5, 3020-3026.

24

Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J., et al. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487-A492.

25

Yang, X. H.; He, P.; Xia, Y. Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127-1130.

26

Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107-2111.

27

Wang, G. X.; Liu, H.; Liu, J. A.; Qiao, S. Z.; Lu, G. Q. M.; Munroe, P., et al. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944-4948.

28

Zhu, S. M.; Zhou, H. A.; Hibino, M.; Honma, I.; Ichihara, M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 2005, 15, 381-386.

29

Cheng, M. Y.; Hwang, B. J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 2010, 195, 4977-4983.

30

Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950-2955.

31

Taguchi, A.; Schuth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1-45.

32

Su, F. B.; Zeng, J. H.; Bao, X. Y.; Yu, Y. S.; Lee, J. Y.; Zhao, X. S. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 2005, 17, 3960-3967.

33

Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I. Electro-chemical capacitance of self-ordered mesoporous carbon. J. Power Sources 2003, 122, 219-223.

34

Wang, Y. G.; Cheng, L.; Li, F.; Xiong, H. M.; Xia, Y. Y. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem. Mater. 2007, 19, 2095-2101.

35

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.

36

Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712-10713.

37

Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677-681.

38

Xiao, J.; Hu, J. Z.; Wang, D. Y.; Hu, D. H.; Xu, W.; Graff, G. L.; Nie, Z. M.; Liu, J.; Zhang, J. G. Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J. Power Sources 2011, 196, 5674-5678.

39

McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161-1166.

40

Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Barde, F., et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040-8047.

41

Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609.

42

Bryantsev, V. S.; Blanco, M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2011, 2, 379-383.

Nano Research
Pages 460-469
Cite this article:
Sun B, Liu H, Munroe P, et al. Nanocomposites of CoO and a Mesoporous Carbon (CMK-3) as a High Performance Cathode Catalyst for Lithium-Oxygen Batteries. Nano Research, 2012, 5(7): 460-469. https://doi.org/10.1007/s12274-012-0231-4

795

Views

90

Crossref

N/A

Web of Science

91

Scopus

12

CSCD

Altmetrics

Received: 22 March 2012
Revised: 10 May 2012
Accepted: 15 May 2012
Published: 13 June 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return