Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.
Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.
Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1-7.
Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1-5.
Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390-1393.
Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.
Wang, Y. G.; Zhou, H. S. A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 2010, 195, 358-361.
Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 2002, 149, A1190-A1195.
Fujinaga, T.; Sakura, S. Polarographic investigation of dissolved-oxygen in non-aqueous solvent. Bull. Chem. Soc. Jpn. 1974, 47, 2781-2786.
Sawyer, D. T.; Chlericato, G.; Angelis, C. T.; Nanni, E. J.; Tsuchiya, T. Effects of media and electrode materials on the electrochemical reduction of dioxygen. Anal. Chem. 1982, 54, 1720-1724.
Aurbach, D.; Daroux, M.; Faguy, P.; Yeager, E. The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J. Electroanal. Chem. 1991, 297, 225-244.
Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C. 2009, 113, 20127-20134.
Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C. 2010, 114, 9178-9186.
Lu, Y. C.; Gasteiger, H. A.; Crumlin, E.; McGuire, R.; Shao-Horn, Y. Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J. Electrochem. Soc. 2010, 157, A1016-A1025.
Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 2011, 50, 6351-6355.
Debart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177-1182.
Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4521-4524.
Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69-A72.
Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170-12171.
Ren, X. M.; Zhang, S. S.; Tran, D. T.; Read, J. Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J. Mater Chem. 2011, 21, 10118-10125.
Thapa, A. K.; Ishihara, T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium-air battery. J. Power Sources 2011, 196, 7016-7020.
Li, J. X.; Wang, N.; Zhao, Y.; Ding, Y. H.; Guan, L. H. MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem. Commun. 2011, 13, 698-700.
Li, Y. L.; Wang, J. J.; Li, X. F.; Liu, J.; Geng, D. S.; Yang, J. L.; Li, R. Y.; Sun, X. L. Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries. Electrochem. Commun. 2011, 13, 668-672.
Yoo, E.; Zhou, H. S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 2011, 5, 3020-3026.
Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J., et al. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487-A492.
Yang, X. H.; He, P.; Xia, Y. Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun. 2009, 11, 1127-1130.
Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107-2111.
Wang, G. X.; Liu, H.; Liu, J. A.; Qiao, S. Z.; Lu, G. Q. M.; Munroe, P., et al. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 2010, 22, 4944-4948.
Zhu, S. M.; Zhou, H. A.; Hibino, M.; Honma, I.; Ichihara, M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 2005, 15, 381-386.
Cheng, M. Y.; Hwang, B. J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 2010, 195, 4977-4983.
Zhang, H. J.; Tao, H. H.; Jiang, Y.; Jiao, Z.; Wu, M. H.; Zhao, B. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources 2010, 195, 2950-2955.
Taguchi, A.; Schuth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1-45.
Su, F. B.; Zeng, J. H.; Bao, X. Y.; Yu, Y. S.; Lee, J. Y.; Zhao, X. S. Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater. 2005, 17, 3960-3967.
Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma, I. Electro-chemical capacitance of self-ordered mesoporous carbon. J. Power Sources 2003, 122, 219-223.
Wang, Y. G.; Cheng, L.; Li, F.; Xiong, H. M.; Xia, Y. Y. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem. Mater. 2007, 19, 2095-2101.
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712-10713.
Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677-681.
Xiao, J.; Hu, J. Z.; Wang, D. Y.; Hu, D. H.; Xu, W.; Graff, G. L.; Nie, Z. M.; Liu, J.; Zhang, J. G. Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J. Power Sources 2011, 196, 5674-5678.
McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161-1166.
Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Barde, F., et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040-8047.
Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609.
Bryantsev, V. S.; Blanco, M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2011, 2, 379-383.