AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fluorophore–Photochrome Co-Embedded Polymer Nanoparticles for Photoswitchable Fluorescence Bioimaging

Tianshe Yang1Qian Liu1Shouzhi Pu2( )Zesheng Dong1Chunhui Huang1Fuyou Li1( )
Department of Chemistry Fudan University 220 Handan RoadShanghai 200433 China
Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science & Technology Normal UniversityNanchang 330013 China
Show Author Information

Graphical Abstract

Abstract

Photoswitchable polymer nanoparticles (ps-PNPs) have been constructed by emulsion polymerization through embedding an iridium(Ⅲ) complex, [Ir(bt)2(pic)] (bt = phenylbenzothiazole, pic = picolinate), as a fluorophore and a diarylethene derivative (DTE) as a photochrome. The ps-PNPs show reversible luminescence modulation with DTE switching using UV light in aqueous solution and even in living cells. Such luminescent modulation only occurred in polymer nanoparticles and not in a simple mixed solution with low concentrations of [Ir(bt)2(pic)] and DTE. The ps-PNPs displayed good cellular uptake and fast intracellular luminescence modulation by photoswitching, indicating the nanoparticles could be developed as photoswitchable luminescent probes for a diversity of bioimaging applications.

Electronic Supplementary Material

Download File(s)
nr-5-7-494_ESM.pdf (389.8 KB)

References

1

Zhao, Q.; Huang, C. H.; Li, F. Y. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 2011, 40, 2508–2524.

2

Lo, K. K. W.; Li, S. P. Y.; Zhang, K. Y. Development of luminescent iridium(Ⅲ) polypyridine complexes as chemical and biological probes. New J. Chem. 2011, 35, 265–287.

3

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

4

Bates, M.; Huang, B.; Dempsey, G. T.; Zhuang, X. W. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007, 317, 1749–1753.

5

Hu, D. H.; Tian, Z. Y.; Wu, W. W.; Wan, W.; Li, A. D. Q. Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J. Am. Chem. Soc. 2008, 130, 15279–15281.

6

Tian, Z. Y.; Wu, W. W.; Wan, W.; Li, A. D. Q. Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J. Am. Chem. Soc. 2009, 131, 4245–4252.

7

Piao, X. J.; Zou, Y.; Wu, J. C.; Li, C. Y.; Yi, T. Multiresponsive switchable diarylethene and its application in bioimaging. Org. Lett. 2009, 11, 3818–3821.

8

Irie, M. Diarylethenes for memories and switches. Chem. Rev. 2000, 100, 1685–1716.

9

Tian, H.; Yang, S. J. Recent progress on diarylethene based on photochromic switches. Chem. Soc. Rev. 2004, 33, 85–97.

10

Zhou, Z. G.; Xiao, S. Z.; Xu, J.; Liu, Z. Q.; Shi, M.; Li, F. Y.; Yi, T.; Huang, C. H. Modulation of photochromic property in an organoboron-based diarylethene by fluoride ion. Org. Lett. 2006, 8, 3911–3914.

11

Zou, Y.; Yi, T.; Xiao, S. Z.; Li, F. Y.; Li, C. Y.; Gao, X.; Wu, J. C.; Yu, M. X.; Huang, C. H. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J. Am. Chem. Soc. 2008, 130, 15750–15751.

12

Tan, W. J.; Zhou, J.; Li, F. Y.; Yi, T.; Tian, H. Visible light-triggered photoswitchable diarylethene-based iridium(Ⅲ) complexes for imaging living cells. Chem. Asian J. 2011, 6, 1263–1268.

13

Al-Atar, U.; Fernandes, R.; Johnsen, B.; Baillie, D.; Branda N. R. A Photocontrolled molecular switch regulates paralysis in a living organism. J. Am. Chem. Soc. 2009, 131, 15966–15967.

14

Yildiz, I.; Deniz, E.; Raymo, F. M. Fluorescence modulation with photochromic switches in nanostructured constructs. Chem. Soc. Rev. 2009, 38, 1859–1867.

15

Tian, H.; Feng, Y. L. Next step of photochromic switches? J. Mater. Chem. 2008, 18, 1617–1622.

16

Zhou, Z. G.; Hu, H.; Yang, H.; Yi, T.; Huang, K. W.; Yu, M. X.; Li, F. Y.; Huang, C. H. Up-conversion luminescent switch based on photochromic diarylethene and rare earth nanophosphors. Chem. Commun. 2008, 4786–4788.

17

Wang, S.; Shen, W.; Feng Y. L.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun. 2006, 1497–1499.

18

Tian, H.; Wang, S. Photochromic bisthienylethene as multi-function switches. Chem. Commun. 2007, 781–792.

19

Wu, W.; Yao, L. M.; Yang, T. S.; Yin, R. Y.; Li, F. Y.; Yu, Y. L. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 2011, 133, 15810–15813.

20

Ramsteiner, I. B.; Hartschuh, A.; Port, H. Relexation pathways and fs dynamics in a photoswitchable intramolecular D→A energy transfer system. Chem. Phys. Lett. 2001, 343, 83–90.

21

Carling, C. J.; Boyer, J. C.; Branda, N. R. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 2009, 131, 10838–10839.

22

Boyer, J. C.; Carling, C. J.; Gates, B. D.; Branda, N. R. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 2010, 132, 15766–15772.

23

Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T.; A digital fluorecent molecular photoswitch. Nature 2002, 420, 759–760.

24

Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 2002, 124, 7481–7489.

25

Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J. Am. Chem. Soc. 2004, 126, 14843–14849.

26

Fukaminato, T.; Doi, T.; Tamaoki, N.; Okuno, K.; Ishibashi, Y.; Miyasaka, H.; Irie, M. Single-molecule fluorescence photoswitching of a diarylethene–perylenebisimide dyad: non-destructive fluorescence readout. J. Am. Chem. Soc. 2011, 133, 4984–4990.

27

Zhu, M. Q.; Zhu, L. Y.; Han, J. J.; Wu, W. W.; Hurst, J. K.; Li, A. D. Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 2006, 128, 4303–4309.

28

Zhu, L. Y.; Wu, W. W.; Zhu, M. Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q. Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging. J. Am. Chem. Soc. 2007, 129, 3524–3526.

29

Wong, H. L.; Ko, C. C.; Lam, W. H.; Zhu, N. Y.; Yam, V. W. W. Design and synthesis of a new class of photochromic diarylethene-containing dithieno[3, 2-b: 2ʹ, 3ʹ-d]pyrroles and their switchable luminescence properties. Chem. Eur. J. 2009, 15, 10005–10009.

30

Ko, C. C.; Yam, V. W. W. Transition metal complexes with photochromic ligands-photosensitization and photoswitchable properties. J. Mater. Chem. 2010, 20, 2063–2070.

31

Li, Z. X.; Liao, L. Y.; Sun, W.; Xu, C. H.; Zhang, C.; Fang, C. J.; Yan, C. H. Reconfigurable cascade circuit in a photo- and chemical-switchable fluorescent diarylethene derivative. J. Phys. Chem. C 2008, 112, 5190–5196.

32

Fölling, J.; Polyakova, S.; Belov, V.; van Blaaderen, A.; Bossi, M. L.; Hell, S. W. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 2008, 4, 134–142.

33

Straight, S. D.; Liddell, P. A.; Terazono, Y.; Moore, T. A.; Moore, A. L.; Gust, D. All-photonic molecular XOR and NOR logic gates based on photochemical control of fluorescence in a fulgimide–porphyrin–dithienylethene triad. Adv. Funct. Mater. 2007, 17, 777–785.

34

Yildiz, I.; Impellizzeri, S.; Deniz, E.; McCaughan, B.; Callan, J. F.; Raymo, F. M. Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies. J. Am. Chem. Soc. 2011, 133, 871–879.

35

Zhao, Q.; Yu, M. X.; Shi, L. X.; Liu, S. J.; Li, C. Y.; Shi, M.; Zhou, Z. G.; Huang, C. H.; Li, F. Y. Cationic iridium(Ⅲ) complexes with tunable emission color as phosphorescent dyes for live cell imaging. Organometallics 2010, 29, 1085–1091.

36

Pu, S. Z.; Luo, F. S.; Wang R. J.; Yang, T. S. 1-(2, 5-Dimethyl-3-thienyl)-3, 3, 4, 4, 5, 5-hexafluoro-2-(5-formyl-2-methyl-3-thienyl)cyclopent-1-ene: A new photochromic diarylethene compound. Acta Cryst. 2006, E62, o1194–o1196.

37

Yang, T. S.; Xia, A.; Liu, Q.; Shi, M.; Wu, H. Z.; Xiong, L. Q.; Huang, C. H.; Li, F. Y. Polymer nanoparticles with an embedded phosphorescent osmium(Ⅱ) complex for cell imaging. J. Mater. Chem. 2011, 21, 5360–5367.

38

Li, C. Y.; Yu, M. X.; Sun, Y.; Wu, Y. Q.; Huang, C. H.; Li, F. Y. A nonemissive iridium(Ⅲ) complex that specifically lights-up the nuclei of living cells. J. Am. Chem. Soc. 2011, 133, 11231–11239.

39

Van Der Meer, B. W.; Coker, G.; Chen, S. Y. S. Resonance Energy Transfer: Theory and Data; VCH: New York, 1994.

Nano Research
Pages 494-503
Cite this article:
Yang T, Liu Q, Pu S, et al. Fluorophore–Photochrome Co-Embedded Polymer Nanoparticles for Photoswitchable Fluorescence Bioimaging. Nano Research, 2012, 5(7): 494-503. https://doi.org/10.1007/s12274-012-0235-0

663

Views

26

Crossref

N/A

Web of Science

25

Scopus

1

CSCD

Altmetrics

Received: 03 February 2012
Revised: 11 April 2012
Accepted: 27 May 2012
Published: 26 June 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return