AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Real Time In Situ Spectroscopic Ellipsometry of the Growth and Plasmonic Properties of Au Nanoparticles on SiO2

H. T. Beyene1,2,,§J. W. Weber2,§M. A. Verheijen2M. C. M. van de Sanden2,3M. Creatore2( )
Materials innovation institute (M2i) P.O. Box 5008, Mekelweg 2, 2600 GA, DelftGA, Delft The Netherlands
Eindhoven University of TechnologyDepartment of Applied Physics, Group plasma and materials processing P.O. Box 513, Den Dolech 2, 5600 MBEindhoven The Netherlands
Dutch Institute for Fundamental Energy Research (DIFFER) P.O Box 1207, Edisonbaan 14, 3430 BE NieuwegeinBE Nieuwegein The Netherlands

Present address: Oled Technologies and Solutions, Jan Campertstraat 7a, 6416 SG Heerlen, The Netherlands

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The evolution of the film thickness and plasmonic properties for sputtered deposited Au nanoparticles on SiO2 layers have been monitored in real time using in situ spectroscopic ellipsometry in the photon energy range 0.75–4.1 eV. The spectroscopic ellipsometry data were analyzed with an optical model in which the optical constants for the Au nanoparticles were parameterized by B-splines which simultaneously provide an accurate determination of an effective thickness and an effective dielectric function. The effective thickness is interpreted with support of transmission and scanning electron microscopy and Rutherford backscattering measurements. Further parameterization of the optical constants by physical oscillators in the isolated spherical particle region allows the microstructural parameters such as size and Au fraction to be extracted. Real time in situ monitoring allows the growth of nanoparticles from the nucleation phase to near percolation to be followed, and there is a red-shift of the plasmon resonance absorption peak as the nanoparticles increase in size and their interaction becomes stronger.

References

1

Pinchuk, A.; von Plessen, G.; Kreibig, U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D-Appl. Phys. 2004, 37, 3133–3139.

2

Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32–41.

3

Toudert, J.; Babonneau, D.; Simonot, L.; Camelio, S.; Girardeau, T. Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: The influence of nanocluster size, shape and organization. Nanotechnology 2008, 19, 125709.

4

Protopapa, M. L. Surface plasmon resonance of metal nano-particles sandwiched between dielectric layers: Theoretical modelling. Appl. Optics 2009, 48, 778–785.

5

Sancho-Parramon, J. Surface plasmon resonance broadening of metallic particles in the quasi-static approximation: A numerical study of size confinement and interparticle interaction effects. Nanotechnology 2009, 20, 235706.

6

Sawyer, W. G.; Freudenberg, K. D.; Bhimaraj, P.; Schadler, L. S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003, 254, 573–580.

7

Haes, A. J.; van Duyne, R. P. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev. Mol. Diagn. 2004, 4, 527.

8

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 2010, 9, 205–213.

9

Evanoff, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1223.

10

Shi, H. Z.; Zhang, L. D.; Cai, W. P. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica Mater. Res. Bull. 2000, 35, 1689–1695.

11

Biederman, H.; Martinu, L.; Slavinska, D.; Chudacek, I. Plasma deposition and properties of composite metal polymer and metal hard carbon-films. Pure Appl. Chem. 1988, 60, 607–618.

12

Schürmann, U.; Takele, H.; Zaporojtchenko, V.; Faupel, F. Optical and electrical properties of polymer metal nano-composites prepared by magnetron co-sputtering Thin Solid Films 2006, 515, 801–804.

13

Takele, H.; Greve, H.; Pochstein, C.; Zaporojtchenko, V.; Faupel, F. Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 2006, 17, 3499–3505.

14

Mandal, S. K.; Roy, R. K.; Pal, A. K. Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films. J. Phys. D-Appl. Phys. 2003, 36, 261–265.

15

Kim, D. G.; Koyama, E.; Tokuhisa, H.; Koshizaki, N.; Do Kim, Y. Tunable aggregation of Au nanoparticles in Au/SiO2 composite film and its photo-absorbance. Appl. Phys. A-Mater. Sci. Process. 2008, 92, 263–266.

16

Jun, H. S.; Lee, K. S.; Yoon, S. H.; Lee, T. S.; Kim, I. H.; Jeong, J. H.; Cheong, B.; Kim, A. S.; Cho, K. M.; Kim, W. M. 3rd order nonlinear optical properties of Au: SiO2 nano-composite films with varying Au particle size. Phys. Stat. Sol. A-Appl. Mat. 2006, 203, 1211–1216.

17

Martinu, L.; Poitras, D. Plasma deposition of optical films and coatings: A review. J. Vac. Sci. Technol. A 2000, 18, 2619–2645.

18

Suhr, H.; Etspuler, A.; Feurer, E.; Oehr, C. Plasma-deposited metal-containing polymer-films. Plasma Chem. Plasma Process. 1988, 8, 9–17.

19

Fracassi, F.; D'Agostino, R. Plasma processed surfaces for biomedical devices: PEO-like, Ag/PEO-like, -COOH functional and micro-patterned coatings. VIDE-SCIENCE TECNIQUE ET APPLICATIONS 2002, 57, 40–48.

20

Beyene, H. T.; Tichelaar, F. D.; Peeters, P.; Kolev, I.; van de Sanden, M. C. M.; Creatore, M. Hybrid Sputtering-Remote PECVD Deposition of Au Nanoparticles on SiO2 Layers for Surface Plasmon Resonance-Based Colored Coatings. Plasma Process. Polym. 2010, 7, 657–664.

21

Beyene, H. T.; Tichelaar, F. D.; Verheijen, M. A.; van de Sanden, M. C. M.; Creatore, M. Plasma-assisted depositon of Au/SiO2 multi-layers as surface plasmon resonance-based red-colored coatings. Plasmonics 2011, 6, 255–260.

22

Cohen, R. W.; Cody, G. D.; Coutts, M. D.; Abeles, B. Optical properties of granular silver and gold films. Phys. Rev. B 1973, 8, 3689–3701.

23

Kreibig, U.; Vollmer, M. Optical properties of metal clusters. Springer-Verlag: Berline Heidelberg, 1995.

24

Wormeester, H.; Stefan Kooij, E.; Poelsema, B. Effective dielectric response of nanostructured layers. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 756–763.

25

Nguyen, H. V.; An, I.; Collins, R. W. Evolution of the optical functions of thin-film aluminium: A real-time spectroscopic ellipsometry study. Phys. Rev. B 1993, 47, 3947–3965.

26

Oates, T. W. H.; McKenzie, D. R.; Bilek, M. M. M. Percolation threshold in ultrathin titanium films determined by in situ spectroscopic ellipsometry. Phy. Rev. B 2004, 70, 195406.

27

Oates, T. W. H.; Mücklich, A. Evolution of plasmon resonances during plasma deposition of silver nanoparticles. Nanotechnology 2005, 16, 2606–2611.

28

Arwin, H.; Aspnes, D. E. Unambiguous determination of thickness and dielectric function of thin films by spectroscopic ellipsometry. Thin Solid Films 1984, 113, 101–113.

29

Hövel, M.; Gompf, B.; Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 2010, 81, 035402.

30

Lončarić, M.; Sancho-Parramon, J.; Zorc, H. Optical pro-perties of gold island films: A spectroscopic ellipsometry study. Thin Solid Films 2011, 519, 2946–2950.

31

Dalacu, D.; Martinu, L. Optical properties of discontinuous gold films: Finite-size effects. J. Opt. Soc. Am. B 2001, 18, 85–92.

32

Kuzmenko, A. B. Kramers-Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 2005, 76, 083108.

33

Lee, S.; Hong, J.; OH, S. -G. Real-time ellipsometry studies of gold thin-film Growth. Jpn. J. Appl. Phys. 1997, 36, 3662–3668.

34

Kooij, E. S.; Wormeester, H.; Brouwer, E. A. M.; van Vroonhoven, E.; van Silfhout, A.; Poelsema, B. Optical Characterization of thin colloidal gold films by spectroscopic ellipsometry. Langmuir 2002, 18, 4401–4413.

35

Langereis, E.; Heil, S. B. S.; knoops, H. C. M.; Keuning, W.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Phys. D: Appl. Phys. 2009, 42, 073001.

36

Losurdo, M.; Bergmair, M.; Bruno, G.; Cattelan, D.; Cobet, C.; de Martino, A.; Fleischer, K.; Dohcevic-Mitrovic, Z.; Esser, N.; Galliet, M. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-art, potential, and perspectives. J. Nanopart. Res. 2009, 11, 1521–1554.

37

Johs, B.; Hale, J. -S. Dielectric function representation by B-splines. Phys. Stat. Sol. A-Appl. Mat. 2008, 205, 715–719.

38

Weber, J. W.; Hansen, T. A. R.; van de Sanden, M. C. M.; Engeln, R. B-spine parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon. J. Appl. Phys. 2009, 106, 123503.

39

Weber, J. W.; Calado, V. E.; van de Sanden, M. C. M. Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97, 091904.

40

Barreca, D.; Gasparotto, A.; Tondello, E.; Bruno, G.; Losurdo, M. Influence of porcess parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering. J. Appl. Phys. 2004, 96, 1655.

41

Zaporojtchenko, V.; Zekonyte, J.; Biswas, A.; Faupel, F. Controlled growth of nano-size metal clusters on polymers by using VPD method. Surf. Sci. 2003, 532, 300–305.

42

Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 2001, 105, 3441–3452.

43

Hövel, H.; Fritz, S.; Hilger, A.; Kreibig, U. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phy. Rev. B 1993, 48, 18178.

44

Sheng, J. W.; Kadono, K.; Yazawa, T. Nanosized gold cluster formation in selected areas of soda-lime silicate glass. J. Non-Cryst. Solids 2003, 324, 295–299.

45

Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.

46

Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.

47

Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 8410–8426.

48

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

49

Halas, N. J.; Lal, S.; Chang, W. -S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

50

Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

Nano Research
Pages 513-520
Cite this article:
Beyene HT, Weber JW, Verheijen MA, et al. Real Time In Situ Spectroscopic Ellipsometry of the Growth and Plasmonic Properties of Au Nanoparticles on SiO2. Nano Research, 2012, 5(8): 513-520. https://doi.org/10.1007/s12274-012-0236-z

599

Views

35

Crossref

N/A

Web of Science

35

Scopus

0

CSCD

Altmetrics

Received: 14 March 2012
Revised: 30 May 2012
Accepted: 01 June 2012
Published: 06 July 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012 2012
Return