Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The efficient catalytic oxidation of water to dioxygen is envisioned to play an important role in solar fuel production and artificial photosynthetic systems. Despite tremendous efforts, the development of oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions remains a great challenge. In this work, we develop a hybrid consisting of Co3O4 nanocrystals supported on single-walled carbon nanotubes (SWNTs) via a simple self-assembly approach. A Co3O4/SWNTs hybrid electrode for the OER exhibits much enhanced catalytic activity as well as superior stability under neutral and alkaline conditions compared with bare Co3O4, which only performs well in alkaline solution. Moreover, the turnover frequency for the OER exhibited by Co3O4/SWNTs in neutral water is higher than for bare Co3O4 catalysts. Synergetic chemical coupling effects between Co3O4 nanocrystals and SWNTs, revealed by the synchrotron X-ray absorption near edge structure (XANES) technique, can be regarded as contributing to the activity, cycling stability and stable operation under neutral conditions. Use of the SWNTs as an immobilization matrix substantially increases the active electrode surface area, enhances the durability of catalysts under neutral conditions and improves the electronic coupling between Co redox-active sites of Co3O4 and the electrode surface.
Armaroli, N.; Balzani, V. The Future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52-66.
Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem. 2010, 2, 724-761.
Sala, X.; Romero, I.; Rodríguez, M.; Escriche, L.; Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 2009, 48, 2842-2852.
Nakagawa, T.; Bjorge, N. S.; Murray, R. W. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J. Am. Chem. Soc. 2009, 131, 15578-15579.
Hou, H. J. M. Structural and mechanistic aspects of Mn-oxo and Co-based compounds in water oxidation catalysis and potential applications in solar fuel production. J. Integr. Plant Biol. 2010, 52, 704-711.
Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018-1027.
Artero, V.; Kerlidou, M. C.; Fontecave, M. Splitting water with cobalt. Angew. Chem. Int. Ed. 2011, 55, 7238-7266.
Wee, T. -L.; Sherman, B. D.; Gust, D.; Moore, A. L.; Moore, T. A.; Liu, Y.; Scaiano, J. C. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 2011, 133, 16742-16745.
McCool, N.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. A Co4O4 "cubane" water oxidation catalyst inspired by photosynthesis. J. Am. Chem. Soc. 2011, 133, 11446-11449.
Kanan, M. W.; Yano, J.; Surendranath, Y.; Din?a, M.; Yachandra, V. K.; Nocera, D. G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 2010, 132, 13692-13701.
Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.
Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499-504.
Esswein, A. J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068-15072.
Chou, N. H.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem. 2011, 4, 1566-1569.
Gerkent, J. B.; McAlpint, J. G.; J. Chent, Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 2011, 133, 14431-14442.
Minguzzi, A.; Fan, F. -R. F.; Vertova, A.; Rondinini, S.; Bard, A. J. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 2012, 3, 217-229.
Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.
Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841-1844.
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Li, X.; Qin, Y.; Picraux, S. T.; Guo, Z. -X. Noncovalent assembly of carbon nanotube-inorganic hybrids. J. Mater. Chem. 2011, 21, 7527-7547.
Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B 2005, 109, 22212-22216.
Toma, F. M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Gonzalez, B. R.; Amenitsch, H.; Ros, T. D., et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces. Nat. Chem. 2010, 2, 826-831.
Shimizu, K.; Wang, J. S.; Cheng, I. F.; Wai, C. M. Rapid and one-step synthesis of single-walled carbon nanotube-supported platinum (Pt/SWNT) using as-grown SWNTs through reduction by methanol. Energ. Fuels 2009, 23, 1662-1667.
Li, X.; Jia, Y.; Cao, A. Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 2010, 4, 506-512.
Zhao, H.; Li, L.; Yang, J.; Zhang, Y. Co@Pt-Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochem. Commun. 2008, 10, 1527-1529.
Kongkanand, A.; Domínguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676-680.
Hu, L.; Peng, Q.; Li, Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136-16137.
Li, J.; Tang, S. B.; Lu, L.; Zeng, H. C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. 2007, 129, 9401-9409.
Mackiewicz, N.; Surendran, G.; Remita, H.; Keita, B.; Zhang, G.; Nadjo, L.; Hagege, A.; Doris, E.; Mioskowski, C. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J. Am. Chem. Soc. 2008, 130, 8110-8111.
Jiang, J.; Li, L. C. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61, 4894-4896.
Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 1986, 14, 397-426.
Dogutan, D. K.; McGuire, R.; Nocera, D. G. Electocatalytic water oxidation by cobalt (Ⅲ) hangman β-octafluoro corroles. J. Am. Chem. Soc. 2011, 133, 9178-9180.
Schechter, A.; Stanevsky, M.; Mahammed, A.; Gross, Z. Four electron oxygen reduction by brominated cobalt corrole. Inorg. Chem. 2012, 51, 22-24.
Li, F.; Zhang, B.; Li, X.; Jiang, Y.; Chen, L.; Li, Y. Sun, L. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes. Angew. Chem. Int. Ed. 2011, 50, 12276-12279.