AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sequential Assembly of Metal-Free Phthalocyanine on Few-Layer Epitaxial Graphene Mediated by Thickness-Dependent Surface Potential

Yabo Gao1Yanfeng Zhang1( )Jun Ren2Denghua Li3Teng Gao1Ruiqi Zhao1Yanlian Yang3Sheng Meng2Chen Wang3Zhongfan Liu1( )
Center for Nanochemistry (CNC) Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing 100871 China
Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of SciencesBeijing 100190 China
National Center for Nanoscience and TechnologyBeijing 100190 China
Show Author Information

Graphical Abstract

Abstract

Due to strong interactions between epitaxial graphene and SiC(0001) substrates, the overlayer charge density induced by the interface charging effect is much more attenuated than that of exfoliated graphene on SiO2. We report herein a quantitive detection of the charge properties of few-layer graphene by surface potential measurements using electrostatic force microscopy (EFM). A minor difference in surface potential is observed to mediate a sequential assembly of metal-free phthalocyanine (H2Pc) on monolayer, bilayer and trilayer graphenes, as demonstrated by scanning tunneling microscopy (STM). In order to understand this, we further executed density functional theory (DFT) calculations which showed higher adsorption energies for Pc on thinner graphenes. In this case, we attribute the unique growth behavior of Pc to its variable adsorption energies on few-layer graphene, and in turn the layer charge variations from the viewpoint of energy minimizations. This work is expected to provide fundamental data useful for related nanodevice fabrications.

References

1

Filleter, T.; Emtsev, K. V.; Seyller, Th.; Bennewitz, R. Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 2008, 93, 133117.

2

Lee, N. J.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Jeon, D. Y.; Kim, D. C.; Seo, S.; Chung, H. J. The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy. Appl. Phys. Lett. 2009, 94, 222107.

3

Liu, L.; Ryu, S. M.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965–1970.

4

Luo, Z. Q.; Yu, T.; Kim, K.; Ni, Z. H.; You, Y. M.; Lim, S. H.; Shen, Z. X.; Wang, S. Z.; Lin, J. Y. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781–1788.

5

Luo, Z. T.; Somers, L. A.; Dan, Y. P.; Ly, T.; Kybert, N. J.; Mele, E. J.; Johnson, A. T. C. Size-selective nanoparticle growth on few-layer graphene films. Nano Lett. 2010, 10, 777–781.

6

Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944–946.

7

Ohta, T.; Bostwick, A.; Seyller, Th.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.

8

Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 2007, 129, 10418–10422.

9

Wehling, T. O.; Novoselov, K. S.; Morozov, S. V.; Vdovin, E. E.; Katsnelson, M. I.; Geim, A. K.; Lichtenstein, A. I. Molecular doping of graphene. Nano Lett. 2008, 8, 173–177.

10

Lu, Y. H.; Chen, W.; Feng, Y. P.; He, P. M. Tuning the electronic structure of graphene by an organic molecule. J. Phys. Chem. B 2009, 113, 2–5.

11

Coletti, C.; Riedl, C.; Lee, D. S.; Krauss, B.; Patthey, L.; von Klitzing, K.; Smet, J. H.; Starke, U. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 2010, 81, 235401.

12

Wang, X. M.; Xu, J. B.; Xie, W. G.; Du, J. Quantitative analysis of graphene doping by organic molecular charge transfer. J. Phys. Chem. C 2011, 115, 7596–7602.

13

Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J. Selective chemical modification of graphene surfaces: Distinction between single and bilayer graphene. Small 2010, 6, 1125–1130.

14

Koehler, F. M.; Luechinger, N. A.; Ziegler, D.; Athanassiou, E. K.; Grass, R. N.; Rossi, A.; Hierold, C.; Stemmer, A.; Stark, W. J. Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. Angew. Chem. Int. Ed. 2009, 48, 224–227.

15

Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao. Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721

16

Wang, Y. L.; Ren, J.; Song, C. L.; Jiang, Y. P.; Wang, L. L.; He, K.; Chen, X.; Jia, J. F.; Meng, S.; Kaxiras, E.; Xue, Q. K.; Ma, X. C. Selective adsorption and electronic interaction of F16CuPc on epitaxial graphene. Phys. Rev. B 2010, 82, 245420.

17

Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, Th.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802.

18

Datta, S. S.; Strachan, D. R.; Mele, E. J.; Johnson, A. T. C. Surface potentials and layer charge distributions in few-layer graphene films. Nano Lett. 2009, 9, 7–11.

19

Burnett, T.; Yakimova, R.; Kazakova, O. Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett 2011, 11, 2324–2328.

20

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys: Condens. Matter. 2002, 14, 2745–2779.

21

Emtsev, K. V.; Speck, F.; Seyller, Th.; Ley, L. Interaction, growth, and ordering of epitaxial graphene on SiC(0001) surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.

22

Seyller, Th.; Bostwick, A.; Emtsev, K. V.; Horn, K.; Ley, L.; McChesney, J. L.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F. Epitaxial graphene: A new material. Phys. StatusSolIdi. B-Basic Solid State Phys. 2008, 245, 1436–1446.

23

Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, Th.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of Few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

24

Brar, V. W.; Zhang, Y. B.; Yayon, Y.; Ohta, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Horn, K.; Crommie, M. F. Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 2007, 91, 122102.

25

Stolyarova, E.; Rim, K. T.; Ryu, S. M.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA 2007, 104, 9209–9212.

26

Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.

27

Curtin, A. E.; Fuhrer, M. S.; Tedesco, J. L.; Myers-Ward, R. L.; Eddy, C. R. Jr.; Gaskill, D. K. Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Appl. Phys. Lett. 2011, 98, 243111.

28

Staii, C.; Johnson, A. T.; Pinto, N. J. Quantitative analysis of scanning conductance microscopy. Nano Lett. 2004, 4, 859–862.

29

Coffey, D. C.; Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 2006, 5, 735–740.

30

Baffou, G.; Mayne, A. J.; Comtet, G.; Dujardin, G.; Sonnet, Ph.; Stauffer, L. Anchoring phthalocyanine molecules on the 6H-SiC(0001)3×3 surface. Appl. Phys. Lett. 2007, 91, 073101.

31

Nilson, K.; Åhlund, J.; Brena, B.; Göthelid, E.; Schiessling, J.; Martensson, N.; Puglia, C. Scanning tunneling microscopy study of metal-free phthalocyanine monolayer structures on graphite. J. Chem. Phys. 2007, 127, 114702.

32

Komeda, T.; Isshiki, H.; Liu, J. Metal-free phthalocyanine (H2Pc) molecule adsorbed on the Au(111) surface: Formation of a wide domain along a single lattice direction. Sci. Technol. Adv. Mater. 2010, 11, 054602.

33

Qiu, X. H.; Wang, C.; Zeng, Q. D.; Xu, B.; Yin, S.; Wang, H. N.; Xu, S.; Bai, C. L. Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 2000, 122, 5550–5556.

34

Fu, Y. S.; Ji, S. H.; Chen, X.; Ma, X. C.; Wu, R.; Wang, C. C.; Duan, W. H.; Qiu, X. H.; Sun, B.; Zhang, P.; Jia, J. F.; Xue, Q. K. Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 2007, 99, 256601.

35

Ren, J.; Meng, S.; Wang, Y. L.; Ma, X. C.; Xue Q. K. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys 2011, 134, 194706.

Nano Research
Pages 543-549
Cite this article:
Gao Y, Zhang Y, Ren J, et al. Sequential Assembly of Metal-Free Phthalocyanine on Few-Layer Epitaxial Graphene Mediated by Thickness-Dependent Surface Potential. Nano Research, 2012, 5(8): 543-549. https://doi.org/10.1007/s12274-012-0239-9

496

Views

6

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 22 December 2011
Revised: 18 February 2012
Accepted: 07 June 2012
Published: 04 July 2012
© Tsinghua University Press and Springer-Verlag 2012
Return