AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanical Properties of Freely Suspended Atomically Thin Dielectric Layers of Mica

Andres Castellanos-Gomez1,2( )Menno Poot1,3Albert Amor-Amorós2Gary A. Steele1Herre S.J. van der Zant1Nicolás Agraït2,4Gabino Rubio-Bollinger2( )
Kavli Institute of Nanoscience Delft University of Technology, Lorentzweg 1, 2628 CJDelft The Netherlands
Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049Madrid Spain
Department of Engineering Science Yale University, Becton 215, 15 Prospect St.New HavenCT 06520 USA
Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049Madrid Spain
Show Author Information

Graphical Abstract

Abstract

We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.

References

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V. and Geim. A. K. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponnmarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

3

Eda, G.; Fanchini, G. and Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

4

Kim, K.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y. and Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J. and Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. -Y.; Galli, G. and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

7

Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J. and Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

8

Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

9

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V. and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

10

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, L. K. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnol. 2010, 5, 722–726.

11

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011, 7, 465–468.

12

Pacile, D.; Meyer, J. Ç.; Girit, C. O. and Zettl, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

13

Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

14

Möller, M. W.; Handge, U. A.; Kunz, D. A.; Lunkenbein, T.; Altstadt, V. and Breu. J. Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 2010, 4, 717–724.

15

Castellanos-Gomez, A.; Wojtaszek, M.; Tombros, N.; Agraït, N.; van Wees, B. J. and Rubio-Bollinger, G. Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 2011, 7, 2491–2497.

16

Fu, Y. -T.; Zartman, G. D.; Yoonessi, M.; Drummy, L. F. and Heinz. H. Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits. J. Phys. Chem. C 2011, 115, 22292–22300.

17

Gao, J.; Guo, W.; Geng, H.; Hou, X.; Shuai, Z. and Jiang, L. Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Res. 2012, 5, 99–108.

18

Low, C. G. and Zhang, Q. Ultra-thin and flat mica as gate dielectric layers. Small 2012, in press, DOI: 10.1002/smll.201200300.

19

Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W. and Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

20

Rudenko, A. N.; Keil, F. J.; Katsnelson, M. I. and Lichtenstein. A. I. Graphene adhesion on mica: role of the surface morphology. Phys. Rev. B 2011, 83, 045409.

21

Lippert, G.; Dabrowski, J.; Lemme, M.; Marcus, C.; Seifarth, O. and Lupina, G. Direct graphene growth on insulator. Phys. Status Solidi B 2011, 248, 2619–2622.

22

Lu, X. F.; Majewski, L. A. and Song, A. M. Electrical characterization of mica as an insulator for organic field-effect transistors. Org. Electron. 2008, 9, 473–480.

23

Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P. and Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

24

Miyake, S. 1 nm deep mechanical processing of muscovite mica by atomic force microscopy. Appl. Phys. Lett. 1995, 67, 2925–2927.

25

He, Y.; Dong, H.; Meng, Q.; Jiang, L.; Shao, W.; He, L. and Hu, W. Mica, a potential two-dimensional crystal gate insulator for organic field-effect transistors. Adv. Mater. 2011, 23, 5502–5507.

26

Ponomarenko, L. A.; Yang, R.; Mohiuddin, T. M.; Katsnelson, M. I.; Novoselov, K. S.; Morozov, S. V.; Zhukov, A. A.; Schedin, F.; Hill. E. W. and Geim, A. K. Effect of a high-κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 2009, 102, 206603.

27

Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S. and Williams, E. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

28

Fan, J.; Michalik, J. M.; Casado, L.; Roddaro, S.; Ibarra, M. R. and De Teresa, J. M. Investigation of the influence on graphene by using electron-beam and photo-lithography. Solid State Commun. 2011, 151, 1574–1578.

29

Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J. and Agraït, N. Ultralong natural graphene nanoribbons and their electrical conductivity. Small 2009, 5, 924–927.

30

Castellanos-Gomez, A.; Agraït, N. and Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.

31

Kim, S.; Wu, J.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z.; Ahmed, N.; Elgan, S. L.; Chen, W. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. P. Natl. Acad. Sci. USA 2010, 107, 17095–17100.

32

Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G. and Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

33

Moser, J.; Verdaguer, A.; Jiménez, D.; Barreiro, A. and Bachtold, A. The environment of graphene probed by electrostatic force microscopy. Appl. Phys. Lett. 2008, 92, 123507.

34

Nemes-Incze, P.; Osváth, Z.; Kamarás, K. and Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442.

35

Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N. and Rubio-Bollinger, G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res. Lett. 2012, 7, 233.

36

Lee, C.; Wei, X.; Kysar, J. W. and Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

37

Landau, L. D. and Lifshitz, E. M. Theory of Elasticity; Oxford: New York, 1986.

38

Gao, S.; Kern, H.; Jin, Z. M.; Popp, T.; Jin, S. Y.; Zhang, H. F. and Zhang, B. R. Poisson's ratio of eclogite: The role of retrogression. Earth. Planet. Sci. Lett. 2001, 192, 523–531.

39

Poot, M. and van der Zant, H. S. J. Mechanical systems in the quantum regime. Phys. Rep. 2012, 511, 273–335.

40

Komaragiri, U.; Begley, M. and Simmonds, J. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. 2005, 72, 203–212.

41

Timoshenko, S. and Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, 1959.

42

Zhang, G.; Wei, Z. and Ferrell, R. E. Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation. Appl. Clay Sci. 2009, 43, 271–281.

43

Sharpe, W. N.; Pulskamp, J.; Gianola, D. S.; Eberl, C.; Polcawich, R. G. and Thompson, R. J. Strain measurements of silicon dioxide microspecimens by digital imaging processing. Exp. Mech. 2007, 47, 649–658.

44

Li, X.; Wang, X.; Xiong, Q. and Eklund, P. C. Mechanical properties of ZnS nanobelts. Nano Lett. 2005, 5, 1982–1986.

45

McNeil, L. E. and Grimsditch, M. Elastic moduli of muscovite mica. J. Phys. : Condens. Matter 1993, 5, 1681–1690.

46

Gómez-Navarro, C.; Burghard, M.; and Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

47

Turchanin, A.; Beyer, A.; Nottbohm, C. T.; Zhang, X.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T. and Golzhauser, A. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv. Mater. 2009, 21, 1233–1237.

48

Kunz, D. A.; Max, E.; Weinkamer, R.; Lunkenbein, T.; Breu, J. and Fery, A. Deformation measurements on thin clay tactoids. Small 2009, 5, 1816–1820.

49

Tapily, K.; Jakes, J. E.; Stone, D. S.; Shrestha, P.; Gu, D.; Baumgart, H. and Elmustafa, A. A. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition. J. Electrochem. Soc. 2008, 155, H545–H551.

Nano Research
Pages 550-557
Cite this article:
Castellanos-Gomez A, Poot M, Amor-Amorós A, et al. Mechanical Properties of Freely Suspended Atomically Thin Dielectric Layers of Mica. Nano Research, 2012, 5(8): 550-557. https://doi.org/10.1007/s12274-012-0240-3

650

Views

89

Crossref

N/A

Web of Science

90

Scopus

3

CSCD

Altmetrics

Received: 19 April 2012
Revised: 09 June 2012
Accepted: 12 June 2012
Published: 06 July 2012
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2012
Return