AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of a Lithium-Encapsulated Fullerenol and the Effect of the Internal Lithium Cation on Its Aggregation Behavior

Hiroshi UenoYuji NakamuraNaohiko IkumaKen Kokubo( )Takumi Oshima
Division of Applied Chemistry Graduate School of Engineering, Osaka University, SuitaOsaka 565-0871 Japan
Show Author Information

Graphical Abstract

Abstract

A lithium-encapsulated fullerenol Li@C60(OH)18, as an example of a polar solvent-soluble endohedral fullerene derivative, has been synthesized and fully characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, UV spectroscopy, electron spin resonance (ESR) spectroscopy, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), elemental analysis, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the particle size was determined using the induced grating (IG) method, and scanning probe microscopy. The encapsulated Li+ was clearly detected by 7Li NMR at very high field in the range −15 to −19 ppm, an intermediate lithium-encapsulated fullerenol was detected by MALDI-TOF-MS, and the molar ratio of lithium-encapsulated fullerenol to empty fullerenol was quantitatively determined to be 12:88 by ICP-AES. The solid-state ESR and particle size measurements using the IG method showed the characteristic anionic behavior with no external counter cations, in what can be called a "cation-encapsulated anion nanoparticle", revealing the drastic differences between its properties and those of empty C60(OH)16.

Electronic Supplementary Material

Download File(s)
nr-5-8-558_ESM.pdf (610.8 KB)

References

1

Tellgmann, R.; Krawez, N.; Lin, S. -H.; Hertel, I. V.; Campbell, E. E. B. Endohedral fullerene production. Nature 1996, 382, 407–408.

2

Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaura, R.; Shinohara, H.; Okada, H.; Sakai, T., et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2010, 2, 678–683.

3

Akasaka, T.; Nagase, S. Endofullerenes: A new Family of Carbon Clusters; Kluwer: Dordrecht, The Netherlands, 2002.

4

Fukuzumi, S.; Ohkubo, K.; Kawashima, Y.; Kim, D. S.; Park, J. S.; Jana, A.; Lynch, V. M.; Kim, D.; Sessler, J. L. Ion-controlled on–off switch of electron transfer from tetrathiafulvalene calix[4]prroles to Li+@C60. J. Am. Chem. Soc. 2011, 133, 15938–15941.

5

Akasaka, T.; Kato, T.; Kobayashi, K.; Nagase, S.; Yamamoto, K.; Funasaka, H.; Takahashi, T. Exohedral adducts of La@C82. Nature 1995, 374, 600–601.

6

Chiang, L. Y.; Lu, F. -J.; Lin, J. -T. Free radical scavenging activity of water-soluble fullerenols. J. Chem. Soc., Chem. Commun. 1995, 1283–1284.

7

Kato, S.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated or gamma-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and beta-carotene bleaching assay. Bioorg. Med. Chem. Lett. 2009, 19, 5293–5296.

8

Xiao, L.; Aoshima, H.; Saitoh, Y.; Miwa, N. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent. Free Radic. Biol. Med. 2011, 51, 1376–1389.

9

Sardenberg, R. B.; Teixeira, C. E.; Pinheiro, M.; Figueiredo, J. M. A. Nonlinear conductivity of fullerenol aqueous solutions. ACS Nano 2011, 5, 2681–2686.

10

Chiang, L. Y.; Wang, L. -Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J. Org. Chem. 1994, 59, 3960–3968.

11

Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W. Versatile nitronium chemistry for C60 fullerene functionalization. J. Am. Chem. Soc. 1992, 114, 10154–10157.

12

Chiang, L. Y.; Swirczewski, J. W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. Multi-hydroxy additions onto C60 fullerene molecules. J. Chem. Soc., Chem. Commun. 1992, 1791–1793.

13

Chiang, L. Y.; Bhonsle, J. B.; Wang, L.; Shu, S. F.; Chang, T. M.; Hwu, J. R. Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 1996, 52, 4963–4972.

14

Schneader, N. S.; Darwish, A. D.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Formation of fullerols via hydroboration of fullerene-C60. J. Chem. Soc., Chem. Commun. 1994, 463–464.

15

Wang, S.; He, P.; Zhang, J. -M.; Jiang, H.; Zhu, S. -Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 2005, 35, 1803–1807.

16

Arrais, A.; Diana, E. Highly water soluble C60 derivatives: A new synthesis. Fuller. Nanotub. Carbon Nanostruct. 2003, 11, 35–46.

17

Li, J.; Takeuchi, A.; Ozawa, M.; Li, X.; Saigo, K.; Kitazawa, K. C60 fullerol formation catalyzed by quaternary ammonium hydroxides. J. Chem. Soc., Chem. Commun. 1993, 1784–1785.

18

Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2008, 2, 327–333.

19

Zhang, G.; Liu, Y.; Liang, D.; Gan, L.; Li, Y. Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew. Chem. Int. Ed. 2010, 49, 5293–5295.

20

Kokubo, K.; Shirakawa, S.; Kobayashi, N.; Aoshima, H.; Oshima, T. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 2011, 4, 204–215.

21

Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem. 2001, 12, 510–514.

22

Sitharaman, B.; Bolskar, R. B.; Rusakova, I.; Wilson, L. J. Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett. 2004, 4, 2373–2378.

23

Popok, V. N.; Azarko, I. I.; Gromov, A. V.; Jönsson, M.; Lassensson, A.; Campbell, E. E. B. Conductance and EPR study of the endohedral fullerene Li@C60. Solid State Commun. 2005, 133, 499–503.

24

Husebo, L. O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc. 2004, 126, 12055–12064.

25

Wada, Y.; Totoki, S.; Watanabe, M.; Moriya, N.; Tsunazawa, Y.; Shimaoka, H. Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt. Express 2006, 14, 5755–576.

Nano Research
Pages 558-564
Cite this article:
Ueno H, Nakamura Y, Ikuma N, et al. Synthesis of a Lithium-Encapsulated Fullerenol and the Effect of the Internal Lithium Cation on Its Aggregation Behavior. Nano Research, 2012, 5(8): 558-564. https://doi.org/10.1007/s12274-012-0241-2

635

Views

20

Crossref

N/A

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 21 April 2012
Revised: 07 June 2012
Accepted: 12 June 2012
Published: 28 July 2012
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2012
Return