AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solution-Processed Bulk Heterojunction Solar Cells Based on Interpenetrating CdS Nanowires and Carbon Nanotubes

Zhen Li1Jinquan Wei1Peixu Li1Luhui Zhang2Enzheng Shi2Chunyan Ji2Jiang Liu1Daming Zhuang1Zhendong Liu3Ji Zhou3Yuanyuan Shang4Yibin Li4Kunlin Wang1Hongwei Zhu1Dehai Wu1Anyuan Cao2( )
Key Laboratory for Advanced Materials Processing Technology and Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
Department of Materials Science and EngineeringCollege of Engineering, Peking UniversityBeijing100871China
State Key Laboratory of New Ceramics and Fine Processing and Department of Materials Science and EngineeringTsinghua UniversityBeijing100084China
Centre for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080China
Show Author Information

Graphical Abstract

Abstract

Incorporation of a bulk heterojunction is an effective strategy to enhance charge separation and carrier transport in solar cells, and has been adopted in polymeric and colloidal nanoparticle solar cells to improve energy conversion efficiency. Here, we report bulk heterojunction solar cells based on one-dimensional structures, fabricated by mixing CdS nanowires (CdS NWs) and single-walled carbon nanotubes (CNTs) to form a composite film with mutually interpenetrating networks through a simple solution–filtration process. Within the composite, the CNT network boosts charge separation by extracting holes generated from CdS NWs and also forms the transport path for carrier collection by the external electrode. At an optimized CNT loading of about 5 wt.%, the CdS NW/CNT bulk heterojunction solar cells showed three orders of magnitude increase in photocurrent and cell efficiency compared to a cell with the same materials arranged in a stacked layer configuration with a plain heterojunction. External quantum efficiency and photoluminescence studies revealed the efficient charge transfer process from photoexcited CdS NWs to CNTs in the mixed form. Our results indicate that the bulk heterojunction structure strategy can be extended to semiconductor NWs and CNTs and can greatly improve solar cell performance.

Electronic Supplementary Material

Download File(s)
nr-5-9-595_ESM.pdf (306.5 KB)

References

1

Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546.

2

Kislyuk, V. V.; Dimitriev, O. P. Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 2008, 8, 131–148.

3

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–888.

4

Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 2011, 6, 568–572.

5

Garnett, E. C.; Yang, P. D. Silicon nanowire radial p–n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.

6

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

7

Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.

8

Lu, Y. R.; Lal, A. High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. Nano Lett. 2010, 10, 4651–4656.

9

Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.

10

Sun, C.; Mathews, N.; Zheng, M. R.; Sow, C. H.; Wong, L. H.; Mhaisalkar, S. G. Aligned tin oxide nanonets for high-performance transistors. J. Phys. Chem. C 2010, 114, 1331–1336.

11

Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S. Z.; Xu, N. S.; Ding, Y.; Wang, Z. L. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 88, 203101.

12

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

13

Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

14

Hu, L. B.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L. F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. USA 2009, 106, 21490–21494.

15

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

16

Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.

17

Steinhagen, C.; Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Harris, J. T.; Holmberg, V. C.; Korgel, B. A. Solution–liquid–solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices. ACS Appl. Mater. Interf. 2011, 3, 1781–1785.

18

Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338.

19

Barkhouse, D.; Debnath, R.; Kramer, I. J.; Zhitomirsky, D.; Pattantyus-Abraham, A. G.; Levina, L.; Etgar, L.; Gratzel, M.; Sargent, E. H. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 2011, 23, 3134–3138.

20

Lee, J. C.; Lee, W.; Han, S. H.; Kim, T. G.; Sung, Y. M. Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates. Electrochem. Commun. 2009, 11, 231–234.

21

Jang, J. S.; Joshi, U. A.; Lee, J. S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 2007, 111, 13280–13287.

22

Ye, Y.; Dai, Y.; Dai, L.; Shi, Z. J.; Liu, N.; Wang, F.; Fu, L.; Peng, R. M.; Wen, X. N.; Chen, Z. J., et al. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl. Mater. Interf. 2010, 2, 3406–3410.

23

Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Y., et al. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.

24

Liang, C. W.; Roth, S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett. 2008, 8, 1809–1812.

25

Zhang, L. H.; Jia, Y.; Wang, S. S.; Li, Z.; Ji, C. Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Shi, E. Z., et al. Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett. 2010, 10, 3583–3589.

26

Wang, Q. Q.; Xu, G.; Han, G. R. Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 2005, 178, 2680–2685.

27

Li, Z.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Shu, Q. K.; Gui, X. C.; Zhu, H. W.; Cao, A. Y.; Wu, D. H. Large area, highly transparent carbon nanotube spiderwebs for energy harvesting. J. Mater. Chem. 2010, 20, 7236–7240.

28

Kongkanand, A.; Dominguez, R. M.; Kamat, P. V. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007, 7, 676–680.

29

Jang, Y. H.; Xin, X. K.; Byun, M.; Jang, Y. J.; Lin, Z. Q.; Kim, D. H. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode. Nano Lett. 2012, 12, 479–485.

30

Sanjines, R.; Abad, M. D.; Vaju, C.; Smajda, R.; Mionic, M.; Magrez, A. Electrical properties and applications of carbon based nanocomposite materials: An overview. Surf. Coat. Tech. 2011, 206, 727–733.

Nano Research
Pages 595-604
Cite this article:
Li Z, Wei J, Li P, et al. Solution-Processed Bulk Heterojunction Solar Cells Based on Interpenetrating CdS Nanowires and Carbon Nanotubes. Nano Research, 2012, 5(9): 595-604. https://doi.org/10.1007/s12274-012-0245-y

593

Views

8

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 09 June 2012
Revised: 30 June 2012
Accepted: 02 July 2012
Published: 22 July 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return