AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modulating Lateral Strain in GaN-Based Epitaxial Layers by Patterning Sapphire Substrates with Aligned Carbon Nanotube Films

Hao Long1,§Yang Wei2,§Tongjun Yu1( )Zhe Wang1Chuanyu Jia1Zhijian Yang1Guoyi Zhang1Shoushan Fan2( )
State Key Laboratory for Artificial Microstructure and Mesoscopic PhysicsSchool of Physics, Peking UniversityBeijing100871China
Department of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China

§ These authors contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

A novel carbon nanotube-patterned sapphire substrate (CPSS) has been utilized for the growth of GaN material and fabrication of a InGaN/GaN light emitting diode (LED) by metal–organic vapor phase epitaxy. Different lateral strain distributions and stress reductions were observed in a GaN thin film on CPSS compared with those on a conventional sapphire substrate. Nanoheteroepitaxy induced by small size nucleation islands of about 50 nm is ascribed to this significant strain modulation. The crystalline quality of the GaN thin film was also improved, as illustrated by X-ray diffraction. Performances of 1 mm × 1 mm LEDs on CPSS were also enhanced, with an operational power increase of 37.5% and higher saturation current.

References

1

Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S.; Yamada, T.; Mukai, T. Superbright green InGaN single-quantum-well-structure light-emitting-diodes. Jpn. J. Appl. Phys. 2 Lett. 1995, 34, L1332–L1335.

2

Kato, Y.; Kitamura, S.; Hiramatsu, K.; Sawaki, N. Selective growth of wurtzite GaN and AlxGa1–xN on GaN sapphire substrates by metalorganic vapor-phase epitaxy. J. Cryst. Growth 1994, 144, 133–140.

3

Usui, A.; Sunakawa, H.; Sakai, A.; Yamaguchi, A. A. Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 2 Lett. 1997, 36, L899–L902.

4

Nam, O. H.; Bremser, M. D.; Zheleva, T. S.; Davis, R. F. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 1997, 71, 2638–2640.

5

Hiramatsu, K.; Nishiyama, K.; Onishi, M.; Mizutani, H.; Narukawa, M.; Motogaito, A.; Miyake, H.; Iyechika, Y.; Maeda, T. Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). J. Cryst. Growth 2000, 221, 316–326.

6

Martinez, O.; Avella, M.; Jimenez, J.; Gerard, B.; Cusco, R.; Artus, L. Optical properties of epitaxial lateral overgrowth GaN structures studied by Raman and cathodoluminescence spectroscopies. J. Appl. Phys. 2004, 96, 3639–3644.

7

Zytkiewicz, Z. R. Laterally overgrown structures as substrates for lattice mismatched epitaxy. Thin Solid Films 2002, 412, 64–75.

8

Tadatomo, K.; Okagawa, H.; Ohuchi, Y.; Tsunekawa, T.; Imada, Y.; Kato, M.; Taguchi, T. High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2 Lett. 2001, 40, L583–L585.

9

Lee, Y. J.; Hwang, J. M.; Hsu, T. C.; Hsieh, M. H.; Jou, M. J.; Lee, B. J.; Lu, T. C.; Kuo, H. C.; Wang, S. C. Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates. IEEE Photonic. Tech. Lett. 2006, 18, 1152–1154.

10

Wuu, D. S.; Wang, W. K.; Shih, W. C.; Horng, R. H.; Lee, C. E.; Lin, W. Y.; Fang, J. S. Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates. IEEE Photonic. Tech. Lett. 2005, 17, 288–290.

11

Yamada, M.; Mitani, T.; Narukawa, Y.; Shioji, S.; Niki, I.; Sonobe, S.; Deguchi, K.; Sano, M.; Mukai, T. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn. J. Appl. Phys. 2 Lett. 2002, 41, L1431–L1433.

12

Chen, J. J.; Su, Y. K.; Lin, C. L.; Chen, S. M.; Li, W. L.; Kao, C. C. Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates. IEEE Photonic. Tech. Lett. 2008, 20, 1193–1195.

13

Huang, H. W.; Lin, C. H.; Huang, J. K.; Lee, K. Y.; Lin, C. F.; Yu, C. C.; Tsai, J. Y.; Hsueh, R.; Kuo, H. C.; Wang, S. C. Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2009, 164, 76–79.

14

Hersee, S. D.; Zubia, D.; Sun, X. Y.; Bommena, R.; Fairchild, M.; Zhang, S.; Burckel, D.; Frauenglass, A.; Brueck, S. R. J. Nanoheteroepitaxy for the integration of highly mismatched semiconductor materials. IEEE J. Quantum Elect. 2002, 38, 1017–1028.

15

Kusakabe, K.; Kikuchi, A.; Kishino, K. Overgrowth of GaN layer on GaN nano-columns by RF-molecular beam epitaxy. J. Cryst. Growth 2002, 237, 988–992.

16

Hersee, S. D.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Liang, J.; Xu, J. Nanoheteroepitaxial growth of GaN on Si nanopillar arrays. J. Appl. Phys. 2005, 97, 124308.

17

Li, Z.; Jiang, Y. X.; Yu, T. J.; Yang, Z. Y.; Tao, Y. B.; Jia, C. Y.; Chen, Z. Z.; Yang, Z. J.; Zhang, G. Y. Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition. Appl. Surf. Sci. 2011, 257, 8062–8066.

18

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

19

Lan, Y. C.; Wang, Y.; Ren, Z. F. Physics and applications of aligned carbon nanotubes. Adv. Phys. 2011, 60, 553–678.

20

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 2002, 419, 801.

21

Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L. A.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

22

Wei, Y.; Jiang, K. L.; Feng, X. F.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 2007, 76, 045423.

23

Zhao, D. G.; Xu, S. J.; Xie, M. H.; Tong, S. Y.; Yang, H. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 2003, 83, 677–679.

24

Harima, H. Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. : Condens. Matter 2002, 14, R967–R993.

25

Zubia, D.; Hersee, S. D. Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J. Appl. Phys. 1999, 85, 6492–6496.

26

Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

Nano Research
Pages 646-653
Cite this article:
Long H, Wei Y, Yu T, et al. Modulating Lateral Strain in GaN-Based Epitaxial Layers by Patterning Sapphire Substrates with Aligned Carbon Nanotube Films. Nano Research, 2012, 5(9): 646-653. https://doi.org/10.1007/s12274-012-0250-1

608

Views

18

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 28 May 2012
Revised: 26 July 2012
Accepted: 30 July 2012
Published: 31 August 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return