AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visible Light Active Pure Rutile TiO2 Photoanodes with 100% Exposed Pyramid-Shaped (111) Surfaces

Xiaolu Liu1Haimin Zhang1Xiangdong Yao2Taicheng An3Porun Liu1Yun Wang1Feng Peng4Anthony R. Carroll1Huijun Zhao1( )
Centre for Clean Environment and EnergyGriffith School of EnvironmentGriffith UniversityGold Coast CampusQLD4222Australia
QLD Micro- and Nanotechnology CentreGriffith UniversityNathan CampusQLD4111Australia
State Key Laboratory of Organic GeochemistryGuangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhou510640China
School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
Show Author Information

Graphical Abstract

Abstract

A pure rutile TiO2 photoanode with 100% exposed pyramid-shaped (111) surfaces has been directly synthesized on a fluorine-doped tin oxide (FTO) conducting substrate via a facile one-pot hydrothermal method. The resulting rutile TiO2 film on the FTO substrate possessed a film thickness of ca. 5 μm and showed good mechanical stability. After calcination at 450 ℃ for 2 h in argon (Ar), the fabricated rutile TiO2 films with 100% exposed pyramid-shaped (111) surfaces were used as photoanodes, exhibiting excellent visible light photoelectrocatalytic activity toward oxidation of water and organics. The excellent visible light activity of the pure rutile TiO2 film photoanode can be attributed to the Ti3+ doping in the bulk and high reactivity of the {111} crystal facets. Such a pure rutile TiO2 film with highly reactive (111) surfaces is a promising material for visible light photocatalysis and solar energy conversion.

Electronic Supplementary Material

Download File(s)
nr-5-11-762_ESM.pdf (179 KB)

References

1

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

2

Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.

3

Liu, M.; Piao, L.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang, W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chem. Commun. 2010, 46, 1664–1666.

4

Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H. M. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem. Commun. 2010, 46, 755–757.

5

Sun, L.; Qin, Y.; Cao, Q.; Hu, B.; Huang, Z.; Ye, L.; Tang, X. Novel photocatalytic antibacterial activity of TiO2 microspheres exposing 100% reactive {111} facets. Chem. Commun. 2011, 47, 12628–12630.

6

Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.

7

Zhang, H.; Han, Y.; Liu, X.; Liu, P.; Yu, H.; Zhang, S.; Yao, X.; Zhao, H. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395–8397.

8

Zhang, H.; Liu, P.; Li, F.; Liu, H.; Wang, Y.; Zhang, S.; Guo, M.; Cheng, H.; Zhao, H. Facile fabrication of anatase TiO2 microspheres on solid substrates and surface crystal facet transformation from {001} to {101}. Chem. —Eur. J. 2011, 17, 5949–5957.

9

Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Jiang, M.; Wang, P.; Whangbo, M. H. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} Facets. Chem. —Eur. J. 2009, 15, 12576–12579.

10

Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

11

Shen, S.; Shi, J.; Guo, P.; Guo, L. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.

12

Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

13

Santra, P. K.; Kamat, P. V. Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%. J. Am. Chem. Soc. 2012, 134, 2508–2511.

14

Zheng, Z.; Huang, B.; Lu, J.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H. Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 2012, 48, 5733–5735.

15

Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

16

Teleki, A.; Pratsinis, S. E. Blue nano titania made in diffusion flames. Phys. Chem. Chem. Phys. 2009, 11, 3742–3747.

17

Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 2012, 51, 6223–6226.

18

Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856–11857.

19

Yang, W.; Wan, F.; Wang, Y.; Jiang, C. Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode. Appl. Phys. Lett. 2009, 95, 133121.

20

Oliver, P. M.; Watson, G. W.; Kelsey, E. T.; Parker, S. C. Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J. Mater. Chem. 1997, 7, 563–568.

21

Zhen, C.; Liu, G.; Cheng, H. -M. A film of rutile TiO2 pillars with well-developed facets on an α-Ti substrate as a photoelectrode for improved water splitting. Nanoscale 2012, 4, 3871–3874.

22

Murakami, N.; Ono, A.; Nakamura, M.; Tsubota, T.; Ohno, T. Development of a visible-light-responsive rutile rod by site-selective modification of iron(III) ion on {111} exposed crystal faces for catalytic photodegradation of pollutants. Appl. Catal. B: Environ. 2010, 97, 115–119.

23

Zhang, H.; Liu, X.; Li, Y.; Sun, Q.; Wang, Y.; Wood, B. J.; Liu, P.; Yang, D.; Zhao, H. Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties. J. Mater. Chem. 2012, 22, 2465–2472.

24

Kakiuchi, K.; Hosono, E.; Imai, H.; Kimura, T.; Fujihara, S. {111}-faceting of low-temperature processed rutile TiO2 rods. J. Cryst. Growth 2006, 293, 541–545.

25

Jiang, D.; Zhao, H.; Zhang, S.; John, R. Characterization of photoelectrocatalytic processes at nanoporous TiO2 film electrodes: Photocatalytic oxidation of glucose. J. Phys. Chem. B 2003, 107, 12774–12780.

26

Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew. Chem., Int. Ed. 2011, 50, 2133–2137.

27

Spadavecchia, F.; Cappelletti, G.; Ardizzone, S.; Ceotto, M.; Falciola, L. Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. J. Phys. Chem. C 2011, 115, 6381–6391.

Nano Research
Pages 762-769
Cite this article:
Liu X, Zhang H, Yao X, et al. Visible Light Active Pure Rutile TiO2 Photoanodes with 100% Exposed Pyramid-Shaped (111) Surfaces. Nano Research, 2012, 5(11): 762-769. https://doi.org/10.1007/s12274-012-0259-5

660

Views

55

Crossref

N/A

Web of Science

53

Scopus

0

CSCD

Altmetrics

Received: 10 August 2012
Revised: 31 August 2012
Accepted: 09 September 2012
Published: 27 September 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return