AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Upconversion Nanoparticles Dramatically Promote Plant Growth Without Toxicity

Juanjuan Peng1Yun Sun1Qian Liu1Yang Yang1Jing Zhou1Wei Feng1( )Xianzhong Zhang2Fuyou Li1( )
State Key Laboratory of Molecular Engineering of Polymers, & Institutes of Biomedical SciencesFudan University220 Handan RoadShanghai200433China
Key Laboratory of RadiopharmaceuticalsMinistry of Education, & College of ChemistryBeijing Normal University19 Xinjiekou Outer StreetBeijing100875China
Show Author Information

Graphical Abstract

Abstract

Upconversion nanophosphors (UCNPs) have been widely used in bioscience and bioimaging, but the effect of UCNPs on plants and on animals after subsequent oral ingestion of the plants has not been studied previously. Herein, we investigate the effects of UCNPs on plant development using mung beans as a model. Incubation at a high UCNP concentration of 100 μg/mL led to growth inhibition, while a low concentration of 10 μg/mL promoted their development. Confocal imaging showed that UCNPs accumulated in the seeds and were transferred from seeds and roots to stems and leaves through the vascular system. Quantitative study by radioanalysis showed the distribution of UCNPs in the plant on the 5th day after incubation decreased in the order (root > seed > leaf > stem). After UCNP-treated bean sprouts were orally ingested by mice, UCNPs were completely excreted with feces, without absorption of residual amounts. Histology and hematology results showed no detectable toxic effects of UCNP-treated mung beans on exposed mice.

Electronic Supplementary Material

Video
nr-5-11-770_ESM_Movie_1.AVI
nr-5-11-770_ESM_Movie_2.AVI
nr-5-11-770_ESM_Movie_3.AVI
Download File(s)
nr-5-11-770_ESM.pdf (700.3 KB)

References

1

Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173.

2

Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854.

3

Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 2010, 14, 582–596.

4

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical–magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

5

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

6

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.

7

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

8

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

9

Ju, Q.; Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped inorganic nanocrystals as luminescent biolabels. Comb. Chem. & High T. Scr. 2012, 15, 580–594.

10

Liu, R.; Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Zheng, W.; Ma, E.; Chen, X. Y. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals. Nanoscale 2012, 4, 4485–4491.

11

Luo, W. Q.; Fu, C. Y.; Li, R. F.; Liu, Y. S.; Zhu, H. M.; Chen, X. Y. Er3+-doped anatase TiO2 nanocrystals: Crystal-field levels, excited-state dynamics, upconversion, and defect luminescence. Small 2011, 7, 3046–3056.

12

Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166–1172.

13

Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025–4028.

14

Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 2010, 49, 2865–2868.

15

Li, Z. Q.; Zhang, Y.; Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 2008, 20, 4765–4769.

16

Vetrone, F.; Naccache, R.; de la Fuente, A. J.; Sanz-Rodriguez, F.; Blazquez-Castro, A.; Rodriguez, E. M.; Jaque, D.; Solé, J. G.; Capobianco, J. A. Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 495–498.

17

Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y.; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838.

18

Liu, Q.; Sun, Y.; Li, C. G.; Zhou, J.; Li, C. Y.; Yang, T. S.; Zhang, X. Z.; Yi, T.; Wu, D. M.; Li, F. Y. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 2011, 5, 3146–3157.

19

Zhou, J.; Yu, M. X.; Sun, Y.; Zhang, X. Z.; Zhu, X. J.; Wu, Z. H.; Wu, D. M.; Li, F. Y. Fluorine-18-labeled Gd3+/ Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 2011, 32, 1148–1156.

20

Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110–1120.

21

Chen, F.; Zhang, S. J.; Bu, W. B.; Liu, X. H.; Chen, Y.; He, Q. J.; Zhu, M.; Zhang, L. X.; Zhou, L. P.; Peng, W. J.; Shi, J. L. A "neck-formation" strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe. Chem. Eur. J. 2010, 16, 11254–11260.

22

Zhou, J.; Sun, Y.; Du, X. X.; Xiong, L. Q.; Hu, H.; Li, F. Y. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 2010, 31, 3287–3295.

23

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011, 123, 7523–7528.

24

Yu, M. X.; Li, F. Y.; Chen, Z. G.; Hu, H.; Zhan, C.; Yang, H.; Huang, C. H. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal. Chem. 2009, 81, 930–935.

25

Wang, L. Y.; Yan, R. X.; Hao, Z. Y.; Wang, L.; Zeng, J. H.; Bao, H.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057.

26

Cheng, L.; Yang, K.; Zhang, S.; Shao, M. W.; Lee, S. T.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010, 3, 722–732.

27

Xiong, L. Q.; Yang, T. S.; Yang, Y.; Xu, C. J.; Li, F. Y. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010, 31, 7078–7085.

28

Pang, X.; Li, D. C.; Peng, A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ. Sci. Pollut R. 2002, 9, 143–148.

29

Chen, W. J.; Tao, Y.; Gu, Y. H.; Zhao, G. W. Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biol. Trace. Elem. Res. 2001, 79, 169–176.

30

Song, W. P.; Hong, F. S.; Wan, Z. G. Effects of lanthanum element on the rooting of loquat plantlet in vitro. Biol. Trace Elem. Res. 2002, 89, 277–284.

31

Chen, S. A.; Zhao, B.; Wang, X.; Yuan, X.; Wang, Y. Promotion of the growth of Crocus sativus cells and the production of crocin by rare earth elements. Biotechnol. Lett. 2004, 26, 27–30.

32

Zhao, J.; Zhu, W. H.; Hu, Q. Promotion of indole alkaloid production in Catharanthus roseus cell cultures by rare earth elements. Biotechnol. Lett. 2000, 22, 825–828.

33

Hu, Z. Y.; Richter, H.; Sparovek, G.; Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 2004, 27, 183–220.

34

Wang, D. F.; Wang, C. H.; Wei, Z. G.; Qi, H. T.; Zhao, G. W. Effect of rare earth elements on peroxidase activity in tea shoots. J. Sci. Food Agr. 2003, 83, 1109–1113.

35

Chen, W. J.; Gu, Y. H.; Zhao, G. W.; Tao, Y.; Luo, J. P.; Hu, T. D. Effects of rare earth ions on activity of RuBPcase in tobacco. Plant Sci. 2000, 152, 145–151.

36

Shi, P.; Chen, G. C.; Huang, Z. W. Effects of La3+ on the active oxygen-scavenging enzyme activities in cucumber seedling leaves. Russ. J. Plant Physl. 2005, 52, 294–297.

37

Ouyang, J.; Wang, X. D.; Zhao, B.; Yuan, X. F.; Wang, Y. C. Effects of rare earth elements on the growth of Cistanche deserticola cells and the production of phenylethanoid glycosides. J. Biotechnol. 2003, 102, 129–134.

38

Alex, P.; Suri, A. K.; Gupta, C. K. Processing of xenotime concentrate. Hydrometallurgy 1998, 50, 331–338.

39

Masau, M.; Cerny, P.; Chapman, R. Dysprosian xenotime-(Y) from the Annie Claim #3 granitic pegmatite, southeastern Manitoba, Canada: Evidence of the tetrad effect? Can. Mineral. 2000, 38, 899–905.

40

Bauluz, B.; J., M. M.; Fernandez-Nieto, C.; Lopez, J. M. G. Geochemistry of precambrian and paleozoic siliciclastic rocks from the Iberian range (NE Spain): Implications for source-area weathering, sorting, provenance, and tectonic setting. Chem. Geol. 2000, 168, 135–150.

41

Buhn, B.; Rankin, A. H.; Schneider, J.; Dulski, P. The nature of orthomagmatic, carbonatitic fluids precipitating REE, Sr-rich fluorite: Fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chem. Geol. 2002, 186, 75–98.

42

Wu, Q.; Borkovec, M.; Sticher, H. On particle-size distributions in soils. Soil Sci. Soc. Am. J. 1991, 57, 883–890.

43

Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B.; Xu. S. K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.

44

Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z. R.; Watanabe, F.; Biris, A. S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227.

45

Carpita, N.; Sabularse, D.; Montezinos, D.; Delmer, D. P. Determination of the pore-size of cell-walls of living plant-cells. Science 1979, 205, 1144–1147.

46

Vanbavel, C. H.; Nakayama, F. S.; Ehrler, W. L. Measuring transpiration resistance of leaves. Plant Physiol. 1965, 40, 535–540.

47

Acton, P. D.; Kung, H. F. Small animal imaging with high resolution single photon emission tomography. Nucl. Med. Biol. 2003, 30, 889–895.

48

Meikle, S. R.; Kench, P.; Kassiou, M.; Banati, R. B. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys. Med. Biol. 2005, 50, 45–61.

Nano Research
Pages 770-782
Cite this article:
Peng J, Sun Y, Liu Q, et al. Upconversion Nanoparticles Dramatically Promote Plant Growth Without Toxicity. Nano Research, 2012, 5(11): 770-782. https://doi.org/10.1007/s12274-012-0261-y

730

Views

67

Crossref

N/A

Web of Science

68

Scopus

3

CSCD

Altmetrics

Received: 05 July 2012
Revised: 09 September 2012
Accepted: 13 September 2012
Published: 02 October 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return