AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Assembly of Suspended Graphene on Carbon Nanotube Scaffolds with Improved Functionalities

Sharon Xiaodai Lim1,2Gavin Kok Wai Koon2,3Da Zhan5Zexiang Shen5Barbaros Özyilmaz1,2,3,4Chornghaur Sow1,2( )
NUS Graduate School for Integrative Sciences and Engineering (NGS)Centre for Life Sciences (CeLS)#05-0128 Medical DriveSingapore117456
Department of PhysicsBlk S12Faculty of ScienceNational University of Singapore2 Science Drive 3Singapore117542
NanoCore4 Engineering Drive 3National University of SingaporeSingapore117576
Graphene Research CentreNational University of SingaporeSingapore117542
Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371
Show Author Information

Graphical Abstract

Abstract

With self-assembly being an efficient and often preferred process to build micro- and nano-materials into ordered macroscopic structures, we report a simple method to assemble monolayer graphene onto densified vertically aligned carbon nanotube (CNT) micropillars en route to unique functional three-dimensional microarchitecture. This hybrid structure provides new means of studying strain induced in suspended graphene. The strain induced could be controlled by the size and number of supporting microstructures, as well as laser-initiated localised relaxation of the graphene sheet. The assembled structure is also able to withstand high-energy electron irradiation with negligible effect on the electrical properties of the hybrid system. The hybrid system was further functionalised with quantum dots on the CNTs with the assembled top graphene layer as a transparent electrode. Significant improvements in photocurrent were achieved in this system.

References

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

3

Li, C. Y.; Li, Z.; Zhu, H. W.; Wang, K. L.; Wei, J. Q.; Li, X. A.; Sun, P. Z.; Zhang, H.; Wu, D. H. Graphene nano-"patches" on a carbon nanotube network for highly transparent/conductive thin film applications. J. Phys. Chem. C. 2010, 114, 14008-14012.

4

Lee, S. H.; Lee, D. H.; Lee, W. J.; Kim, S. O. Tailored assembly of carbon nanotubes and graphene. Adv. Funct. Mater. 2011, 21, 1338-1354.

5

Patra, N.; Song, Y. B.; Kral, P. Self-assembly of graphene nanostructures on nanotubes. ACS Nano 2011, 5, 1798-1804.

6

Hong, T. K.; Lee, D. W.; Choi, H. J.; Shin, H. S.; Kim, B. S. Transparent, flexible conducting hybrid multi layer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano 2010, 4, 3861-3868.

7

Dong, X. C.; Li, B.; Wei, A.; Cao, X. H.; Chan-Park, M. B.; Zhang, H.; Li, L. J.; Huang, W.; Chen, P. One-step growth of graphene-carbon nanotube hybrid materials by chemical vapor deposition. Carbon 2011, 49, 2944-2949.

8

Lee, D. H.; Kim, J. E.; Han, T. H.; Hwang, J. W.; Jeon, S.; Choi, S. Y.; Hong, S. H.; Lee, W. J.; Ruoff, R. S.; Kim, S. O. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 2010, 22, 1247-1252.

9

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 2006, 5, 987-994.

10

Lim, X. D.; Foo, H. W. G.; Chia, G. H.; Sow, C. H. Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations. ACS Nano 2010, 4, 1067-1075.

11

Hayamizu, Y.; Yamada, T.; Mizuno, K.; Davis, R. C.; Futaba, D. N.; Yumura, M.; Hata, K. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube Wafers. Nature Nanotech. 2008, 3, 289-294.

12

Kaur, S.; Sahoo, S.; Ajayan, P.; Kane, R. S. Capillarity-driven assembly of carbon nanotubes on substrates into dense vertically aligned arrays. Adv. Mater. 2007, 19, 2984-2987.

13

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et. al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 2010, 5, 574-578.

14

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60-63.

15

Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346-352.

16

Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K. et. al. Raman 2D-band splitting in graphene: Theory and experiment. ACS Nano 2011, 5, 2231-2239.

17

Pereira, V. M.; Neto, A. H. C. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 2009, 103, 046801.

18

Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nature Phys. 2010, 6, 30-33.

19

Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W. Y.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotech. 2009, 4, 562-566.

20

Schaller, R. D.; Agranovich, V. M.; Klimov, V. I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys. 2005, 1, 189-194.

21

Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865-871.

22

Camacho, R. E.; Morgan, A. R.; Flores, M. C.; McLeod, T. A.; Kumsomboone, V. S.; Mordecai, B. J.; Bhattacharjea, R.; Tong, W.; Wagner, B. K.; Flicker, J. D. et. al. Carbon nanotube arrays for photovoltaic applications. JOM 2007, 59, 39-42.

23

Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323-327.

24

Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949-1955.

25

Lim, K. Y.; Sow, C. H.; Lin, J. Y.; Cheong, F. C.; Shen, Z. X.; Thong, J. T. L.; Chin, K. C.; Wee, A. T. S. Laser pruning of carbon nanotubes as a route to static and movable structures. Adv. Mater. 2003, 15, 300-303.

26

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.

27

Frank, O.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Galiotis, C. Compression behavior of single-layer graphenes. ACS Nano 2010, 4, 3131-3138.

28

Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A. C.; Geim, A. K.; Novoselov, K. S.; Galiotis, C. Subjecting a graphene monolayer to tension and compression. Small 2009, 5, 2397-2402.

29

Chen, C. C.; Bao, W. Z.; Theiss, J.; Dames, C.; Lau, C. N.; Cronin, S. B. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 2009, 9, 4172-4176.

30

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1291.

31

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N. et. al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, gruneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

32

Reich, S.; Jantoljak, H.; Thomsen, C. Shear strain in carbon nanotubes under hydrostatic pressure. Phys. Rev. B 2000, 61, 13389-13392.

33

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490-493.

34

Huang, M. Y.; Pascal, T. A.; Kim, H.; Goddard, W. A.; Greer, J. R. Electronic-mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 2011, 11, 1241-1246.

35

Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotech. 2011, 6, 339-342.

36

Childres, I.; Jauregui, L. A.; Foxe, M.; Tian, J. F.; Jalilian, R.; Jovanovic, I.; Chen, Y. P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109.

37

Zhu, Y. W.; Cheong, F. C.; Yu, T.; Xu, X. J.; Lim, C. T.; Thong, J. T. L.; Shen, Z. X.; Ong, C. K.; Liu, Y. J.; Wee, A. T. S. et. al. Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films. Carbon 2005, 43, 395-400.

38

Wang, Y. H.; Lin, J.; Huan, C. H. A.; Chen, G. S. Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 680-682.

Nano Research
Pages 783-795
Cite this article:
Lim SX, Koon GKW, Zhan D, et al. Assembly of Suspended Graphene on Carbon Nanotube Scaffolds with Improved Functionalities. Nano Research, 2012, 5(11): 783-795. https://doi.org/10.1007/s12274-012-0262-x

666

Views

8

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 July 2012
Revised: 28 August 2012
Accepted: 24 September 2012
Published: 16 October 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return