AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices

Choong-Heui ChungTze-Bin SongBrion BobRui ZhuYang Yang( )
Department of Materials Science and EngineeringCalifornia NanoSystems InstituteUniversity of California Los AngelesLos AngelesCA90095USA
Show Author Information

Graphical Abstract

Abstract

Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demonstrate the efficacy of low temperature solution-processed flexible metal nanowire networks embedded in a conductive metal oxide nanoparticle matrix as transparent conductors, and investigate their microstructural, optoelectronic, and mechanical properties in attempting to resolve nearly all of the technological issues imposed on silver nanowire networks. Surrounding silver nanowires by conductive indium tin oxide nanoparticles offers low wire to wire junction resistance, smooth surface morphology, and excellent mechanical adhesion and flexibility while maintaining the high transmittance and the low sheet resistance. In addition, we discuss the relationship between sheet resistance and transmittance in the silver nanowire composite transparent conductors and their maximum achievable transmittance. Although we have selected silver nanowires and indium tin oxide nanoparticle matrix as demonstration materials, we anticipate that various metal nanowire meshes embedded in various conductive metal oxide nanoparticle matrices can effectively serve as transparent conductors for a wide variety of optoelectronic devices owing to their superior performance, simple, cost-effective, and gentle processing.

References

1

Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. Low resistivity indium–tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol. A 1990, 8, 1399–1402.

2

Ishibashi, S.; Higuchi, Y.; Ota, Y.; Nakamura, K. Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films. J. Vac. Sci. Technol. A 1990, 8, 1403–1406.

3

Carcia, P. F.; McLean, R. S.; Reilly, M. H.; Li, Z. G.; Pillione, L. J.; Messier, R. F. Low-stress indium–tin–oxide thin films rf magnetron sputtered on polyester substrates. Appl. Phys. Lett. 2002, 81, 1800–1802.

4

Gu, G.; Bulovic, V.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. Transparent organic light emitting devices. Appl. Phys. Lett. 1996, 68, 2606–2608.

5

Burrows, P. E.; Gu, G.; Forrest, S. R.; Vicenzi, E. P.; Zhou, T. X. Semitransparent cathodes for organic light emitting devices. J. Appl. Phys. 2000, 87, 3080–3085.

6

Suzuki, H.; Hikita, M. Organic light-emitting diodes with radio frequency sputter-deposited electron injecting electrodes. Appl. Phys. Lett. 1996, 68, 2276–2278.

7

Chung, C. H.; Ko, Y. W.; Kim, Y. H.; Sohn, C. Y.; Chu, H. Y.; Lee, J. H. Improvement in performance of transparent organic light-emitting diodes with increasing sputtering power in the deposition of indium tin oxide cathode. Appl. Phys. Lett. , 2005, 86, 093504.

8

Chung, C. H.; Ko, Y. W.; Kim, Y. H.; Sohn, C. Y.; Chu, H. Y.; Park, S. H. K.; Lee, J. H. Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode. Thin Solid Films 2005, 491, 294–297.

9

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

10

Hu, L. B.; Wu, H.; Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 2011, 36, 760–765.

11

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.

12

Gaynor, W.; Lee, J. Y.; Peumans, P. Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 2010, 4, 30–34.

13

Liu, C. H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.

14

Yang, L. Q.; Zhang, T.; Zhou, H. X.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces, 2011, 3, 4075–4084.

15

Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11 241–249.

16

Lu, Y. C.; Chou, K. S. Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology 2010, 21, 215707.

17

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

18

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

19

Madaria, A. R.; Kumar, A.; Zhou, C. W. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011, 22, 245201.

20

Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

21

Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

22

Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; de Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371–4375.

23

Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484–4488.

24

Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

25

Yu, Z. B.; Zhang, Q. W.; Li, L.; Chen, Q.; Niu, X. F.; Liu, J.; Pei, Q. B. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 2011, 23, 664–668.

26

Zhu, R.; Chung, C. H.; Cha, K. C.; Yang, W. B.; Zheng, Y. B.; Zhou, H. P.; Song, T. B.; Chen, C. C.; Weiss. P. S.; Li, G.; Yang, Y. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877–9882.

27

Chung, C. H.; Song, T. B.; Bob, B.; Zhu, R.; Duan, H. S.; Yang, Y. Silver nanowire composite window layers for fully solution-deposited thin film photovoltaic devices. Adv. Mater. 2012, 24, 5499–5504.

28

Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513–2517.

Nano Research
Pages 805-814
Cite this article:
Chung C-H, Song T-B, Bob B, et al. Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices. Nano Research, 2012, 5(11): 805-814. https://doi.org/10.1007/s12274-012-0264-8

638

Views

136

Crossref

N/A

Web of Science

139

Scopus

0

CSCD

Altmetrics

Received: 19 August 2012
Revised: 24 September 2012
Accepted: 03 October 2012
Published: 22 October 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return