AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical WO3 Flowers Comprising Porous Single-Crystalline Nanoplates Show Enhanced Lithium Storage and Photocatalysis

Yongcai Qiu1,2Gui-Liang Xu3Qin Kuang2Shi-Gang Sun3Shihe Yang1,2( )
Nano Science and Technology ProgramWilliam Mong Institute of Nano Science and TechnologyThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongChina
State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Show Author Information

Graphical Abstract

Abstract

We report a morphology-conserved transformation approach to successfully synthesize a unique porous WO3 nanoplate assembly, which is hierarchically structured like a flower, from an ammonium tungsten peroxo oxalate containing precursor. The resulting novel, multiple length scale architecture of WO3 and its formation process have been investigated by a series of microscopic, spectroscopic and other techniques. A possible growth mechanism was proposed on the basis of the experiments. When tested as a lithium ion battery anode, the porous WO3 nanoplate assembly showed high rate capacity and high cyclability. Not least, it has also exhibited high photocatalytic activities under visible light irradiation.

Electronic Supplementary Material

Download File(s)
nr-5-11-826_ESM.pdf (431.1 KB)

References

1

Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nano-structures for energy conversion and storage. ChemSusChem. 2008, 1, 676–697.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater 2005, 4, 366–377.

3

Wallace, G. G.; Chen, J.; Mozer, A. J.; Forsyth, M.; MacFarlane, D. R.; Wang, C. Nanoelectrodes: Energy conversion and storage. Mater. Today 2009, 12, 20–27.

4

Guo, Y.; Hu, J.; Wan, L. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

5

Qiu, Y.; Yan, K.; Deng, H.; Yang, S. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407–413.

6

Wang, Q.; Jiao, L.; Du, H.; Peng, W.; Han, Y.; Song, D.; Si, Y.; Wang, Y.; Yuan, H. Novel flower-like CoS hierarchitectures: One-pot synthesis and electrochemical properties. J. Mater. Chem. 2011, 21, 327–329.

7

Qiu, Y.; Chen, W.; Yang, S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2010, 49, 3675–3679.

8

Xiao, X.; Lu, J.; Li, Y. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

9

Xing, Z.; Ju, Z.; Yang, J.; Xu, H.; Qian, Y. One-stephydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477–485.

10

Han, X.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, Z. X. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

11

Qin, D. D.; Tao, C. L.; Friesen, S. A.; Wang, T. H.; Varghese, O. K.; Bao, N. Z.; Yang, Z. Y.; Mallouk, T. E.; Grimes, C. A. Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. Chem. Commum. 2012, 48, 729–731.

12

Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.

13

Zhang, J.; Tu, J.; Xia, X.; Wang, X.; Gu, C. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J. Mater. Chem. 2011, 21, 5492–5498.

14

Li, Y. B.; Bando, Y.; Golberg, D.; Kurashima, K. WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chem. Phys. Lett. 2003, 367, 214–218.

15

Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187.

16

Qiu, Y.; Chen, W.; Yang, S. Facile hydrothermal preparation of hierarchically assembled, porous singlecrystalline ZnO nanoplates and their application in dye-sensitized solar cells. J. Mater. Chem. 2010, 20, 1001–1006.

17

Qiu, Y.; Yang, S.; Deng, H.; Jin, L.; Li, W. A novel nanostructured spinel ZnCo2O4 electrode material: Morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem. 2010, 20, 4439–4444.

18

Qiu, Y.; Xu, G.; Yan, K.; Sun, H.; Xiao, J.; Yang, S.; Sun, S.; Jin, L.; Deng, H. Morphology-conserved transformation: Synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem. 2011, 21, 6346–6353.

19

Chen, D.; Ye, J. H. Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Func. Mater. 2008, 18, 1922–1928.

20

Pecquenard, B.; Castro-Garcia, S.; Livage, J.; Zavalij, P. Y.; Whittingham, M. S.; Thouvenot, R. Structure of hydrated tungsten peroxides [WO2(O2)H2O]·nH2O. Chem. Mater 1998, 10, 1882–1888.

21

Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928–1933.

22

Wang, C. Q.; Chen, D. R.; Jiao, X. L. Flower-like In2O3 nanostructures derived from novel precursor: Synthesis, characterization, and formation mechanism. J. Phys. Chem. C 2009, 113, 7714–7718.

23

Yang, J.; Jiao, L.; Zhao, Q.; Wang, Q.; Gao, H.; Huan, Q.; Zheng, W.; Wang, Y.; Yuan, H. Facile preparation and electrochemical properties of hierarchical chrysanthemum-like WO3·0.33H2O. J. Mater. Chem. 2012, 22, 3699–3701.

24

Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z. et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564.

Nano Research
Pages 826-832
Cite this article:
Qiu Y, Xu G-L, Kuang Q, et al. Hierarchical WO3 Flowers Comprising Porous Single-Crystalline Nanoplates Show Enhanced Lithium Storage and Photocatalysis. Nano Research, 2012, 5(11): 826-832. https://doi.org/10.1007/s12274-012-0266-6

562

Views

89

Crossref

N/A

Web of Science

94

Scopus

3

CSCD

Altmetrics

Received: 19 August 2012
Revised: 05 October 2012
Accepted: 08 October 2012
Published: 19 October 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return