Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report the emergence of the D band Raman mode in single-walled carbon nanotubes under large axial strain. The D to G mode Raman intensity ratio (ID/IG) is observed to increase with strain quadratically by more than a factor of 100-fold. Up to 5% strain, all changes in the Raman spectra are reversible. The emergence of the D band, instead, arises from the reversible and elastic symmetry-lowering of the sp2 bonds structure. Beyond 5%, we observe irreversible changes in the Raman spectra due to slippage of the nanotube from the underlying substrate, however, the D band intensity resumes its original pre-strain intensity, indicating that no permanent defects are formed.
Sazonova, V.; Yalsh, Y.; üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.
Chiu, H. -Y.; Hung, P.; Postma, H. W. C.; Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008, 8, 4342–4346.
Yakobson, B.; Smalley, R. Fullerene nanotubes: C1, 000, 000 and beyond. Am. Scientist 1997, 85, 324–337.
Pugno, N. M. On the strength of the carbon nanotube-based space elevator cable: From nanomechanics to megamechanics. J. of Phys. : Condens Matter 2006, 18, S1971–S1990.
Chang, C. -C.; Hsu, I. K.; Aykol, M.; Hung, W. -H.; Chen, C. -C.; Cronin, S. B. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 2010, 4, 5095–5100.
Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.
Zhao, Q. Z.; Nardelli, M. B.; Bernholc, J. Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B 2002, 65, 144105.
Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 6105–6109.
Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588.
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.
Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.
Hulman, M.; Skákalová, V.; Roth, S.; Kuzmany, H. Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by gamma rays. J. Appl. Phys. 2005, 98, 024311.
Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.
Canccądo, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.
Cronin, S. B.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified singlewall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.
Kumar, R.; Aykol, M.; Ryu, K.; Zhou, C. W.; Cronin, S. B. Top-down lithographic method for inducing strain in carbon nanotubes. J. Appl. Phys. 2009, 106, 014306.
Cronin, S. B.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.
Frogley, M. D.; Zhao, Q.; Wagner, H. D. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys. Rev. B 2002, 65, 113413.
Lucas, M.; Young, R. J. Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys. Rev. B 2004, 69, 085405.
Kumar, R.; Cronin, S. B. Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Phys. Rev. B 2007, 75, 155421.
Son, H.; Samsonidze, G. G.; Kong, J.; Zhang, Y. Y.; Duan, X. J.; Zhang, J.; Liu, Z. F.; Dresselhaus, M. S. Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 253113.
Huang, M.; Wu, Y.; Chandra, B.; Yan, H.; Shan, Y.; Heinz, T. F.; Hone, J. Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys. Rev. Lett. 2008, 100, 136803.
Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Matinaga, F. M.; Dantas, M. S. S.; Pimenta, M. A. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys. Rev. B 2001, 63, 245416.
Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.
Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of doubleresonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433.
Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.
Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.
Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7304–7308.
Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Kavan, L.; Galiotis, C. Raman 2D-band splitting in graphene: Theory and experiment. ACS Nano 2011, 5, 2231–2239.
Huang, M.; Yan, H.; Heinz, T. F.; Hone, J. Probing straininduced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010, 10, 4074–4079.
Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y.; Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J. Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? Phys. Rev. Lett. 2000, 84, 4950–4953.
Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. -Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.
Maune, H.; Bockrath, M. Elastomeric carbon nanotube circuits for local strain sensing. Appl. Phys. Lett. 2006, 89, 173131.
Yang, W.; Wang, R. -Z.; Yan, H. Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 2008, 77, 195440.
Wu, G.; Zhou, J.; Dong, J. M. Raman modes of the deformed single-wall carbon nanotubes. Phys. Rev. B 2005, 72, 115411.
Gao, B.; Jiang, L.; Ling, X.; Zhang, J. F.; Liu, Z. Chiralitydependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain. J. Phys. Chem. C 2008, 112, 20123–20125.
Jorio, A.; Fantini, C.; Dantas, M. S. S.; Pimenta, M. A.; Souza Filho, A. G.; Samsonidze, G. G.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Saito, R. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 2002, 66, 115411.
Righi, A.; Costa, S. D.; Chacham, H.; Fantini, C.; Venezuela, P.; Magnuson, C.; Colombo, L.; Bacsa, W. S.; Ruoff, R. S.; Pimenta, M. A. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 2011, 84, 241409.
Araujo, P. T.; Barbosa Neto, N. M.; Chacham, H.; Carara, S. S.; Soares, J. S.; Souza, A. D.; Cançado, L. G.; de Oliveira, A. B.; Batista, R. J. C.; Joselevich, E.; Dresselhaus, M. S.; Jorio, A. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes. Nano Lett. 2012, 12, 4110–4116.
Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503.