AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strain-Induced D Band Observed in Carbon Nanotubes

Chia-Chi Chang1Chun-Chung Chen2Wei-Hsuan Hung3I-Kai Hsu4Marcos A. Pimenta5Stephen B. Cronin1,2( )
Department of PhysicsUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of Materials Science and EngineeringFeng Chia University
Department of Materials ScienceUniversity of Southern CaliforniaLos AngelesCA90089USA
Departamento de FísicaUniversidade Federal de Minas GeraisBelo Horizonte, MG, 30123-970Brazil
Show Author Information

Graphical Abstract

Abstract

We report the emergence of the D band Raman mode in single-walled carbon nanotubes under large axial strain. The D to G mode Raman intensity ratio (ID/IG) is observed to increase with strain quadratically by more than a factor of 100-fold. Up to 5% strain, all changes in the Raman spectra are reversible. The emergence of the D band, instead, arises from the reversible and elastic symmetry-lowering of the sp2 bonds structure. Beyond 5%, we observe irreversible changes in the Raman spectra due to slippage of the nanotube from the underlying substrate, however, the D band intensity resumes its original pre-strain intensity, indicating that no permanent defects are formed.

Electronic Supplementary Material

Download File(s)
nr-5-12-854_ESM.pdf (213.8 KB)

References

1

Sazonova, V.; Yalsh, Y.; üstünel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.

2

Chiu, H. -Y.; Hung, P.; Postma, H. W. C.; Bockrath, M. Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 2008, 8, 4342–4346.

3

Yakobson, B.; Smalley, R. Fullerene nanotubes: C1, 000, 000 and beyond. Am. Scientist 1997, 85, 324–337.

4

Pugno, N. M. On the strength of the carbon nanotube-based space elevator cable: From nanomechanics to megamechanics. J. of Phys. : Condens Matter 2006, 18, S1971–S1990.

5

Chang, C. -C.; Hsu, I. K.; Aykol, M.; Hung, W. -H.; Chen, C. -C.; Cronin, S. B. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 2010, 4, 5095–5100.

6

Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

7

Zhao, Q. Z.; Nardelli, M. B.; Bernholc, J. Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B 2002, 65, 144105.

8

Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 6105–6109.

9

Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588.

10

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

11

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758.

12

Hulman, M.; Skákalová, V.; Roth, S.; Kuzmany, H. Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by gamma rays. J. Appl. Phys. 2005, 98, 024311.

13

Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.

14

Canccądo, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

15

Cronin, S. B.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified singlewall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

16

Kumar, R.; Aykol, M.; Ryu, K.; Zhou, C. W.; Cronin, S. B. Top-down lithographic method for inducing strain in carbon nanotubes. J. Appl. Phys. 2009, 106, 014306.

17

Cronin, S. B.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.

18

Frogley, M. D.; Zhao, Q.; Wagner, H. D. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys. Rev. B 2002, 65, 113413.

19

Lucas, M.; Young, R. J. Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys. Rev. B 2004, 69, 085405.

20

Kumar, R.; Cronin, S. B. Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling. Phys. Rev. B 2007, 75, 155421.

21

Son, H.; Samsonidze, G. G.; Kong, J.; Zhang, Y. Y.; Duan, X. J.; Zhang, J.; Liu, Z. F.; Dresselhaus, M. S. Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 253113.

22

Huang, M.; Wu, Y.; Chandra, B.; Yan, H.; Shan, Y.; Heinz, T. F.; Hone, J. Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys. Rev. Lett. 2008, 100, 136803.

23

Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Matinaga, F. M.; Dantas, M. S. S.; Pimenta, M. A. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys. Rev. B 2001, 63, 245416.

24

Cao, J.; Wang, Q.; Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 2003, 90, 157601.

25

Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of doubleresonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433.

26

Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

27

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

28

Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7304–7308.

29

Frank, O.; Mohr, M.; Maultzsch, J.; Thomsen, C.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Kavan, L.; Galiotis, C. Raman 2D-band splitting in graphene: Theory and experiment. ACS Nano 2011, 5, 2231–2239.

30

Huang, M.; Yan, H.; Heinz, T. F.; Hone, J. Probing straininduced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010, 10, 4074–4079.

31

Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y.; Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J. Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? Phys. Rev. Lett. 2000, 84, 4950–4953.

32

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Liu, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. -Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

33

Maune, H.; Bockrath, M. Elastomeric carbon nanotube circuits for local strain sensing. Appl. Phys. Lett. 2006, 89, 173131.

34

Yang, W.; Wang, R. -Z.; Yan, H. Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 2008, 77, 195440.

35

Wu, G.; Zhou, J.; Dong, J. M. Raman modes of the deformed single-wall carbon nanotubes. Phys. Rev. B 2005, 72, 115411.

36

Gao, B.; Jiang, L.; Ling, X.; Zhang, J. F.; Liu, Z. Chiralitydependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain. J. Phys. Chem. C 2008, 112, 20123–20125.

37

Jorio, A.; Fantini, C.; Dantas, M. S. S.; Pimenta, M. A.; Souza Filho, A. G.; Samsonidze, G. G.; Brar, V. W.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; ünlü, M. S.; Goldberg, B. B.; Saito, R. Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys. Rev. B 2002, 66, 115411.

38

Righi, A.; Costa, S. D.; Chacham, H.; Fantini, C.; Venezuela, P.; Magnuson, C.; Colombo, L.; Bacsa, W. S.; Ruoff, R. S.; Pimenta, M. A. Graphene Moiré patterns observed by umklapp double-resonance Raman scattering. Phys. Rev. B 2011, 84, 241409.

39

Araujo, P. T.; Barbosa Neto, N. M.; Chacham, H.; Carara, S. S.; Soares, J. S.; Souza, A. D.; Cançado, L. G.; de Oliveira, A. B.; Batista, R. J. C.; Joselevich, E.; Dresselhaus, M. S.; Jorio, A. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes. Nano Lett. 2012, 12, 4110–4116.

40

Stone, A. J.; Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503.

Nano Research
Pages 854-862
Cite this article:
Chang C-C, Chen C-C, Hung W-H, et al. Strain-Induced D Band Observed in Carbon Nanotubes. Nano Research, 2012, 5(12): 854-862. https://doi.org/10.1007/s12274-012-0269-3

863

Views

22

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 27 August 2012
Revised: 02 October 2012
Accepted: 11 October 2012
Published: 10 November 2012
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2012
Return