AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanowire-Composite Based Flexible Thermoelectric Nanogenerators and Self-Powered Temperature Sensors

Ya Yang1,§Zong-Hong Lin1,§Techien Hou1Fang Zhang1Zhong Lin Wang1,2( )
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia30332-0245USA
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciences, BeijingChina

§ These authors contributed equally

Show Author Information

Graphical Abstract

Abstract

We have developed a flexible thermoelectric nanogenerator (TENG) that is based on a Te-nanowire/poly(3-hexyl thiophene) (P3HT) polymer composite as the thermoelectric material with a positive Seebeck coefficient of 285 μV/K. A linear relationship between the output voltage of TENG and the temperature difference across the device was observed. Under a temperature difference of 55 K, two TENGs can provide an output voltage of 38 mV in serial connection, or a current density exceeding 32 nA/mm2 in parallel connection. We demonstrated that the flexible TENG can be used as a wearable energy harvester by using human body temperature as the energy source. In addition, the TENG can also be used as a self-powered temperature sensor with a response time of 17 s and a reset time of 9 s. The detection sensitivity of the sensor can reach 0.15 K in ambient atmosphere.

Electronic Supplementary Material

Download File(s)
nr-5-12-888_ESM_Viedo-1.wmv (2.2 MB)
nr-5-12-888_ESM_Viedo-2.wmv (2.1 MB)
nr-5-12-888_ESM_Viedo-3.wmv (4.4 MB)

References

1

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

2

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

3

Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: A bird's eye view. MRS Bull. 2006, 31, 188–194.

4

Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.

5

Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901.

6

Ahn, K.; Han, M. K.; He, J. Q.; Androulakis, J.; Ballikaya, S.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 2010, 132, 5227–5235.

7

See, K. C.; Feser, J. P.; Chen, C. E.; Majumdar, A.; Urban, J. J.; Segalman, R. A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 2010, 10, 4664–4667.

8

Jood, P.; Mehta, R. J.; Zhang, Y. L.; Peleckis, G.; Wang, X. L.; Siegel, R. W.; Borca-Tasciuc, T.; Dou, S. X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337–4342.

9

Liang, D.; Yang, H.; Finefrock, S. W.; Wu, Y. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting. Nano Lett. 2012, 12, 2140–2145.

10

Yu, C.; Kim, Y. S.; Kim, D.; Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites. Nano Lett. 2008, 8, 4428–4432.

11

Wang, Z. L. Toward self-powered sensor networks. Nano Today 2010, 5, 512–514.

12

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

13

Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 2011, 4, 3359–3363.

14

Han, W. H.; Zhou, Y. S; Zhang, Y.; Chen, C. Y.; Lin, L.; Wang, X.; Wang, S. H.; Wang, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS nano 2012, 6, 3760–3766.

15

Chen, Y. Z.; Liu, T. H.; Chen, C. Y.; Liu, C. H.; Chen, S. Y.; Wu, W. W.; Wang, Z. L.; He, J. H.; Chu, Y. H.; Chueh, Y. L. Taper PbZr0.2Ti0.8O3 nanowire arrays: From controlled growth by pulsed laser deposition to piezopotential measurements. ACS nano 2012, 6, 2826–2832.

16

Zhou, Y. S.; Wang, K.; Han, W. H.; Rai, S. C.; Zhang, Y.; Ding, Y.; Pan, C. F.; Zhang, F.; Zhou, W. L.; Wang, Z. L. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS nano 2012, 6, 6478–6482.

17

Wu, W. W.; Bai, S.; Yuan, M. M.; Qin, Y.; Wang, Z. L.; Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS nano 2012, 6, 6231–6235.

18

Cui, N. Y.; Wu, W. W.; Zhao, Y.; Bai, S.; Meng, L. X.; Qin, Y.; Wang, Z. L. Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett. 2012, 12, 3701–3705.

19

Lee, C. H.; Yi, G. C.; Zuev, Y. M.; Kim, P. Thermoelectric power measurements of wide band gap semiconducting nanowires. Appl. Phys. Lett. 2009, 94, 022106.

20

He, M.; Ge, J.; Lin, Z. Q.; Feng, X. H.; Wang, X. W.; Lu, H. B.; Yang, Y. L.; Qiu, F. Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface. Energy Environ. Sci. 2012, 5, 8351–8358.

Nano Research
Pages 888-895
Cite this article:
Yang Y, Lin Z-H, Hou T, et al. Nanowire-Composite Based Flexible Thermoelectric Nanogenerators and Self-Powered Temperature Sensors. Nano Research, 2012, 5(12): 888-895. https://doi.org/10.1007/s12274-012-0272-8

546

Views

211

Crossref

N/A

Web of Science

211

Scopus

0

CSCD

Altmetrics

Received: 23 August 2012
Revised: 18 September 2012
Accepted: 14 October 2012
Published: 12 November 2012
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2012
Return