AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of Patterned Boron Carbide Nanowires and Their Electrical, Field Emission, and Flexibility Properties

Yuan Huang1Fei Liu2Qiang Luo1Yuan Tian1Qiang Zou1Chen Li1Chengmin Shen1Shaozhi Deng2Changzhi Gu1Ningsheng Xu2Hongjun Gao1( )
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and Technology and School of Physics and EngineeringSun Yat-sen UniversityGuangzhou510275China
Show Author Information

Graphical Abstract

Abstract

Large-area patterned boron carbide nanowires (B4C NWs) have been synthesized using chemical vapor deposition (CVD). The average diameter of B4C NWs is about 50 nm, with a mean length of 20 μm. The B4C NWs have a single-crystal structure and conductivities around 5.1 × 10-2 Ω-1·cm-1. Field emission measurements of patterned B4C NWs films show that their turn-on electric field is 2.7 V/μm, lower than that of continuous B4C NWs films. A single nanowire also exhibits excellent flexibility under high-strain bending cycles without deformation or failure. All together, this suggests that B4C NWs are a promising candidate for flexible cold cathode materials.

Electronic Supplementary Material

Download File(s)
nr-5-12-896_ESM.pdf (303.7 KB)

References

1

Wood, C.; Emin, D. Conduction mechanism in boron carbide. Phys. Rev. B 1984, 29, 4582–4587.

2

Zhou, M. J.; Wong, S. F.; Ong, C. W.; Li, Q. Microstructure and mechanical properties of B4C films deposited by ion beam sputtering. Thin Solid Films 2007, 516, 336–339.

3

Knotek, O.; Lugscheider, E.; Siry, C. W. Tribological properties of B-C thin films deposited by magnetron-sputter-ion plating method. Surf. Coat. Technol. 1997, 91, 167–173.

4

Aselage, T. L.; Emin, D.; McCready, S. S.; Duncan, R. V. Large enhancement of boron carbides' Seebeck coeffiecients through vibrational softening. Phys. Rev. Lett. 1998, 81, 2316–2319.

5

Caruso, A. N.; Dowben, P. A.; Balkir, S.; Schemm, N.; Osberg, K.; Fairchild, R. W.; Flores, O. B.; Balaz, S.; Harken, A. D.; Robertson, B. W.; Brand, J. I. The all boron carbide diode neutron detector: Comparison with theory. Mater. Sci. Eng. B 2006, 135, 129–133.

6

Tao, X. Y.; Dong, L. X; Wang, X. N.; Zhang, W. K.; Nelson, B. J.; Li, X. D. B4C-nanowires/carbon-microfiber hybrid structures and composites from cotton T-shirts. Adv. Mater. 2010, 22, 2055–2059.

7

Tian, J. F.; Xu, Z. C.; Shen, C. M.; Liu, F.; Xu, N. S.; Gao, H. J. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale 2010, 2, 1375–1389.

8

Mondal, S.; Banthia, A. K. Low-temperature synthetic route for boron carbide. J. Eur. Ceram. Soc. 2005, 25, 287–291.

9

Bao, L. H.; Li, C.; Tian, Y.; Tian, J. F.; Hui, C.; Wang, X. J.; Shen, C. M.; Gao, H. J. Synthesis and photoluminescence property of boron carbide nanowires. Chin. Phys. B 2008, 17, 4585–4591.

10

Bao, L. H.; Li, C.; Tian, Y.; Tian, J. F.; Hui, C.; Wang, X. J.; Shen, C. M.; Gao, H. J. Single crystalline boron carbide nanobelts: Synthesis and characterization. Chin. Phys. B 2008, 17, 4247–4252.

11

McIlroy, D. N.; Zhang, D.; Kranov, Y.; Norton, M. G. Nanosprings. Appl. Phys. Lett. 2001, 79 1540–1542.

12

Tian, J. F.; Bao, L. H.; Wang, X. J.; Hui, C.; Liu, F.; Li, C.; Shen, C. M.; Wang, Z. L.; Gu, C. Z.; Gao, H. J. Probing field emission from boron carbide nanowires. Chin. Phys. Lett. 2008, 25, 3463–3466.

13

Li, C.; Tian, Y.; Hui, C.; Tian, J. F.; Bao, L. H.; Shen C. M.; Gao, H. J. Field emission properties of patterned boron nanocones. Nanotechnology 2010, 21, 325705.

14

Hui, C.; Shen, C. M.; Yang, T. Z.; Bao, L. H.; Tian, J. F.; Ding, H.; Li, C.; Gao, H. J. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 2008, 112, 11336–11339.

15

Ma, R. Z.; Bando, Y. Investigation on growth of boron carbide nanowires. Chem. Mater. 2002, 14, 4403–4407.

16

Schmechel, R.; Werheit, H. Structural defects of some icosahedral boron-rich solids and their correlation with the electronic properties. J. Solid State Chem. 2000, 154, 61–67.

17

Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.

18

Liu, F.; Su, Z. J.; Li, L.; Mo, F. Y.; Jin, S. Y.; Deng, S. Z.; Chen, J.; Shen, C. M.; Gao, H. J.; Xu, N. S. Effect of contact mode on the electrical transport and field-emission performance of individual boron nanowires. Adv. Funct. Mater. 2010, 20, 1994–2003.

19

Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu, F. F.; Golberg, D. Fluorination and electrical conductivity of BN nanotubes. J. Am. Chem. Soc. 2005, 127, 6552–6553.

20

Tian, J. F.; Hui, C.; Bao, L. H.; Li, C.; Tian, Y.; Ding, H.; Shen, C. M.; Gao, H. J. Patterned boron nanowires and field emission properties. Appl. Phys. Lett. 2009, 94, 083101.

21

Tian, Y.; Shen, C. M.; Li, C.; Shi, X. Z.; Huang, Y.; Gao, H. J. Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. Nano Res. 2011, 4, 780–787.

22

Wang, X. J.; Tian, J. F.; Yang, T. Z.; Bao, L. H.; Hui, C.; Liu, F.; Shen, C. M.; Gu, C. Z.; Xu, N. S.; Gao, H. J. Single crystalline boron nanocones: Electric transport and field emission properties. Adv. Mater. 2007, 19, 4480–4485.

23

Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83, 144–146.

24

Fowler, R. H.; F. R. S.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. London, Ser. A 1928, 119, 173–181.

25

Chen, M. W.; McCauley, J. W.; Hemker, K. J. Shock-induced localized amorphization in boron carbide. Science 2003, 299, 1563–1566.

26

Tian, J. F.; Cai, J. M.; Hui, C.; Zhang, C. D.; Bao, L. H.; Gao, M.; Shen, C. M.; Gao, H. J. Boron nanowires for flexible electronics. Appl. Phys. Lett. 2008, 93, 122105.

Nano Research
Pages 896-902
Cite this article:
Huang Y, Liu F, Luo Q, et al. Fabrication of Patterned Boron Carbide Nanowires and Their Electrical, Field Emission, and Flexibility Properties. Nano Research, 2012, 5(12): 896-902. https://doi.org/10.1007/s12274-012-0273-7

440

Views

13

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 16 August 2012
Revised: 09 October 2012
Accepted: 15 October 2012
Published: 03 November 2012
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2012
Return