AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

From Zero to Two Dimensions: Supramolecular Nanostructures Formed from Perylene-3,4,9,10-tetracarboxylic Diimide (PTCDI) and Ni on the Au(111) Surface Through the Interplay Between Hydrogen-Bonding and Electrostatic Metal–Organic Interactions

Miao Yu1,4Wei Xu1Nataliya Kalashnyk1Youness Benjalal2,3Samuthira Nagarajan2Federico Masini1Erik Lægsgaard1Mohamed Hliwa2,3Xavier Bouju2André Gourdon2Christian Joachim2Flemming Besenbacher1( )Trolle R. Linderoth1( )
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityAarhus8000Denmark
Nanosciences groupCEMES-CNRSToulouse31055France
Faculté des Sciences Ben M'sikUniversité Hassan II-MohammédiaCasablanca, BP 7955Morocco
School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbin150001China
Show Author Information

Graphical Abstract

Abstract

Supramolecular self-assembly of the organic semiconductor perylene-3, 4, 9, 10-tetracarboxylic diimide (PTCDI) together with Ni atoms on the inert Au(111) surface has been investigated using high-resolution scanning tunneling microscopy under ultrahigh vacuum conditions. We demonstrate that it is possible by tuning the co-adsorption conditions to synthesize three distinct self-assembled Ni-PTCDI nanostructures from zero-dimensional (0-D) nanodots over one-dimensional (1-D) chains to a two-dimensional (2-D) porous network. The subtle interplay among non-covalent interactions responsible for the formation of the observed structures has been revealed from force-field structural modeling and calculations of partial charges, bond orders and binding energies in the structures. A unifying motif for the 1-D chains and the 2-D network is found to be double N-H…O hydrogen bonds between PTCDI molecules, similar to the situation found in surface structures formed from pure PTCDI. Most interestingly, we find that the role of the Ni atoms in forming the observed structures is not to participate in metal-organic coordination bonding. Rather, the Ni adatoms acquire a negative partial charge through interaction with the substrate and the Ni-PTCDI interaction is entirely electrostatic.

References

1

Joachim, C.; Gimzewski, J. K.; Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

2

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

3

Schoonveld, W. A.; Wildeman, J.; Fichou, D.; Bobbert, P. A.; van Wees, B. J.; Klapwijk, T. M. Coulomb-blockade transport in single-crystal organic thin-film transistors. Nature 2000, 404, 977–980.

4

Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982–986.

5

Bohringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R.; Mauri, F.; De Vita, A.; Car, R. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 1999, 83, 324–327.

6

Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C. Z.; Brune, H.; Günter, P.; Kern, K. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 2002, 124, 7991–8000.

7

Cañas-Ventura, M. E.; Xiao, W.; Wasserfallen, D.; Müllen, K.; Brune, H.; Barth, J. V.; Fasel, R. Self-assembly of periodic bicomponent wires and ribbons. Angew. Chem. Int. Ed. 2007, 46, 1814–1818.

8

Keeling, D. L.; Oxtoby, N. S.; Wilson, C.; Humphry, M. J.; Champness, N. R.; Beton, P. H. Assembly and processing of hydrogen bond induced supramolecular nanostructures. Nano Lett. 2003, 3, 9–12.

9

Yu, M.; Kalashnyk, N.; Xu, W.; Barattin, R.; Benjalal, Y.; Laegsgaard, E.; Stensgaard, I.; Hliwa, M.; Bouju, X.; Gourdon, A.; Joachim, C.; Besenbacher, F.; Linderoth, T. R. Supramolecular architectures on surfaces formed through hydrogen bonding optimized in three dimensions. ACS Nano 2010, 4, 4097–4109.

10

Stepanow, S.; Lin, N.; Vidal, F.; Landa, A.; Ruben, M.; Barth, J. V.; Kern, K. Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. Nano Lett. 2005, 5, 901–904.

11

De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Würthner, F.; Jonkheijm, P.; Schenning, A.; Meijer, E. W.; De Schryver, F. C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. Nano Lett. 2005, 5, 77–81.

12

álvarez, L.; Peláez, S.; Caillard, R.; Serena, P. A.; Martin-Gago, J. A.; Méndez, J. Metal-organic extended 2D structures: Fe-PTCDA on Au(111). Nanotechnology 2010, 21, 305073.

13

Clair, S.; Pons, S.; Brune, H.; Kern, K.; Barth, J. V. Mesoscopic metallosupramolecular texturing by hierarchic assembly. Angew. Chem. Int. Ed. 2005, 44, 7294–7297.

14

Shi, Z. L.; Lin, N. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface. J. Am. Chem. Soc. 2010, 132, 10756–10761.

15

Tait, S. L.; Wang, Y.; Costantini, G.; Lin, N.; Baraldi, A.; Esch, F.; Petaccia, L.; Lizzit, S.; Kern, K. Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100). J. Am. Chem. Soc. 2008, 130, 2108–2113.

16

Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J. V.; Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 2003, 42, 2670–2673.

17

Méndez, J.; Caillard, R.; Otero, G.; Nicoara, N.; Martín-Gago, J. A. Nanostructured organic material: From molecular chains to organic nanodots. Adv. Mater. 2006, 18, 2048–2052.

18

Makoudi, Y.; Arab, M.; Palmino, F.; Duverger, E.; Ramseyer, C.; Picaud, F.; Chérioux, F. A stable room-temperature molecular assembly of zwitterionic organic dipoles guided by a Si(111)-7×7 template effect. Angew. Chem. Int. Ed. 2007, 46, 9287–9290.

19

Heim, D.; écija, D.; Seufert, K.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. Self-assembly of flexible one-dimensional coordination polymers on metal surfaces. J. Am. Chem. Soc. 2010, 132, 6783–6790.

20

Liljeroth, P.; Swart, I.; Paavilainen, S.; Repp, J.; Meyer, G. Single-molecule synthesis and characterization of metal-ligand complexes by low-temperature STM. Nano Lett. 2010, 10, 2475–2479.

21

Haq, S.; Hanke, F.; Dyer, M. S.; Persson, M.; Iavicoli, P.; Amabilino, D. B.; Raval, R. Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. J. Am. Chem. Soc. 2011, 133, 12031–12039.

22

Guillermet, O.; Niemi, E.; Nagarajan, S.; Bouju, X.; Martrou, D.; Gourdon, A.; Gauthier, S. Self-assembly of fivefoldsymmetric molecules on a threefold-symmetric surface. Angew. Chem. Int. Ed. 2009, 48, 1970–1973.

23

Villagomez, C. J.; Guillermet, O.; Goudeau, S.; Ample, F.; Xu, H.; Coudret, C.; Bouju, X.; Zambelli, T.; Gauthier, S. Self-assembly of enantiopure domains: The case of indigo on Cu(111). J. Chem. Phys. 2010, 132, 074705.

24

Tseng, T. C.; Abdurakhmanova, N.; Stepanow, S.; Kern, K. Hierarchical assembly and reticulation of two-dimensional Mn- and Ni-TCNQx (x = 1, 2, 4) coordination structures on a metal surface. J. Phys. Chem. C 2011, 115, 10211–10217.

25

Krenner, W.; Klappenberger, F.; Kühne, D.; Diller, K.; Qu, Z. R.; Ruben, M.; Barth, J. V. Positioning of single Co atoms steered by a self-assembled organic molecular template. J. Phys. Chem. Lett. 2011, 2, 1639–1645.

26

Cañas-Ventura, M. E.; Aïit-Mansour, K.; Ruffieux, P.; Rieger, R.; Müllen, K.; Brune, H.; Fasel, R. Complex interplay and hierarchy of interactions in two-dimensional supramolecular assemblies. ACS Nano 2011, 5, 457–469.

27

Seitsonen, A. P.; Lingenfelder, M.; Spillmann, H.; Dmitriev, A.; Stepanow, S.; Lin, N.; Kern, K.; Barth, J. V. Density functional theory analysis of carboxylate-bridged diiron units in two-dimensional metal-organic grids. J. Am. Chem. Soc. 2006, 128, 5634–5635.

28

Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Ruben, M.; Silanes, I.; Arnau, A.; Kern, K.; Brune, H.; Barth, J. V. Metal-organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 2007, 7, 3813–3817.

29

Barth, J. V. Fresh perspectives for surface coordination chemistry. Surf. Sci. 2009, 603, 1533–1541.

30

Björk, J.; Matena, M.; Dyer, M. S.; Enache, M.; Lobo-Checa, J.; Gade, L. H.; Jung, T. A.; Stöhr, M.; Persson, M. STM fingerprint of molecule-adatom interactions in a self-assembled metal-organic surface coordination network on Cu(111). Phys. Chem. Chem. Phys. 2010, 12, 8815–8821.

31

Walch, H.; Dienstmaier, J.; Eder, G.; Gutzler, R.; Schlögl, S.; Sirtl, T.; Das, K.; Schmittel, M.; Lackinger, M. Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds. J. Am. Chem. Soc. 2011, 133, 7909–7915.

32

Henningsen, N.; Rurali, R.; Limbach, C.; Drost, R.; Pascual, J. I.; Franke, K. J. Site-dependent coordination bonding in self-assembled metal-organic networks. J. Phys. Chem. Lett. 2011, 2, 55–61.

33

Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z.; Schmid, M.; Steinröck, H. P.; Gottfried, J. M.; Lin, N. Coordination and metalation bifunctionality of Cu with 5, 10, 15, 20-tetra (4-pyridyl) porphyrin: Toward a mixed-valence two-dimensional coordination network. J. Am. Chem. Soc. 2012, 134, 6401–6408.

34

Kley, C. S.; Čechal, J.; Kumagai, T.; Schramm, F.; Ruben, M.; Stepanow, S.; Kern, K. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. J. Am. Chem. Soc. 2012, 134, 6072–6075.

35

Trant, A. G.; Jones, T. E.; Baddeley, C. J. Thermal treatment of glutamic acid-modified nickel nanoclusters on Au{111} leads to the formation of one-dimensional metal-organic coordination networks. J. Phys. Chem. C 2007, 111, 10534–10540.

36

Jensen, S.; Baddeley, C. J. Formation of PTCDI-based metal organic structures on a Au(111) surface modified by 2-D Ni clusters. J. Phys. Chem. C 2008, 112, 15439–15448.

37

Stepanow, S.; Lin, N.; Payer, D.; Schlickum, U.; Klappenberger, F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K. Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. Angew. Chem. Int. Ed. 2007, 46, 710–713.

38

Clair, S.; Pons, S.; Fabris, S.; Baroni, S.; Brune, H.; Kern, K.; Barth, J. V. Monitoring two-dimensional coordination reactions: Directed assembly of Co-terephthalate nanosystems on Au(111). J. Phys. Chem. B 2006, 110, 5627–5632.

39

Pawin, G.; Wong, K. L.; Kim, D.; Sun, D.; Bartels, L.; Hong, S.; Rahman, T. S.; Carp, R.; Marsella, M. A surface coordination network based on substrate-derived metal adatoms with local charge excess. Angew. Chem. Int. Ed. 2008, 47, 8442–8445.

40

Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J. M.; Zang, L. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J. Am. Chem. Soc. 2005, 127, 10496–10497.

41

Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128.

42

Ludwig, C.; Gompf, B.; Petersen, J.; Strohmaier, R.; Eisenmenger, W. STM investigations of PTCDA and PTCDI on graphite and MoS2—a systematic study of epitaxy and STM image-contrast. Z. Phys. B 1994, 93, 365–373.

43

Guillermet, O.; Glachant, A.; Hoarau, J. Y.; Mossoyan, J. C.; Mossoyan, M. Perylene tetracarboxylic diimide ultrathin film deposition on Pt(100): A LEED, AES, REELS and STM study. Surf. Sci. 2004, 548, 129–137.

44

Swarbrick, J. C.; Ma, J.; Theobald, J. A.; Oxtoby, N. S.; O'shea, J. N.; Champness, N. R.; Beton, P. H. Square, hexagonal, and row phases of PTCDA and PTCDI on Ag-Si(111) 3 R30°. J. Phys. Chem. B 2005, 109, 12167–12174.

45

Mura, M.; Silly, F.; Briggs, G. A. D.; Castell, M. R.; Kantorovich, L. N. H-bonding supramolecular assemblies of PTCDI molecules on the Au(111) surface. J. Phys. Chem. C 2009, 113, 21840–21848.

46

Topple, J. M.; Burke, S. A.; Fostner, S.; Grutter, P. Thin film evolution: Dewetting dynamics of a bimodal molecular system. Phys. Rev. B 2009, 79, 205414.

47

Ait-Mansour, K.; Treier, M.; Ruffieux, P.; Bieri, M.; Jaafar, R.; Gröning, P.; Fasel, R.; Groning, O. Template-directed molecular nanostructures on the Ag/Pt(111) dislocation network. J. Phys. Chem. C 2009, 113, 8407–8411.

48

O'shea, J. N.; Saywell, A.; Magnano, G.; Perdigão, L. M. A.; Satterley, C. J.; Beton, P. H.; Dhanak, V. R. Adsorption of PTCDI on Au(111): Photoemission and scanning tunnelling microscopy. Surf. Sci. 2009, 603, 3094–3098.

49

Perdigao, L. M. A.; Perkins, E. W.; Ma, J.; Staniec, P. A.; Rogers, B. L.; Champness, N. R.; Beton, P. H. Bimolecular networks and supramolecular traps on Au(111). J. Phys. Chem. B 2006, 110, 12539–12542.

50

Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

51

Gardener, J. A.; Shvarova, O. Y.; Briggs, G. A. D.; Castell, M. R. Intricate hydrogen-bonded networks: Binary and ternary combinations of uracil, PTCDI, and melamine. J. Phys. Chem. C 2010, 114, 5859–5866.

52

Laegsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542.

53

Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. General atomic and molecular electronic-structure system. J. Comput. Chem. 1993, 14, 1347–1363.

54

Allinger, N. L.; Chen, K. S.; Lii, J. H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 1996, 17, 642–668.

55

Allinger, N. L. Understanding molecular structure from molecular mechanics. J. Comput. Aided Mol. Des. 2011, 25, 295–316.

56
Stewart, J. J. P. MOPAC2009; Stewart ComputationalChemistry. Colorado Springs, CO, USA. http://openmopac.net/(accessed 2008).
57

Sautet, P.; Joachim, C. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys. Rev. B 1988, 38, 12238–12247.

58

Sautet, P.; Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 1991, 185, 23–30.

59

Bouju, X.; Joachim, C.; Girard, C.; Tang, H. Mechanics of (Xe)(N) atomic chains under STM manipulation. Phys. Rev. B 2001, 63, 085415.

60

Yu, M.; Xu, W.; Benjalal, Y.; Barattin, R.; Laegsgaard, E.; Stensgaard, I.; Hliwa, M.; Bouju, X.; Gourdon, A.; Joachim, C.; Linderoth, T. R.; Besenbacher, F. STM manipulation of molecular moulds on metal surfaces. Nano Res. 2009, 2, 254–259.

61

Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201–341.

62

Tautz, F. S. Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA. Prog. Surf. Sci. 2007, 82, 479–520.

63

Xu, W.; Dong, M. D.; Gersen, H.; Rauls, E.; Vázquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Laegsgaard, E.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854–858.

64

Lii, J. H.; Allinger, N. L. Directional hydrogen bonding in the MM3 force field: II. J. Comput. Chem. 1998, 19, 1001–1016.

65

Chambliss, D. D.; Wilson, R. J.; Chiang, S. Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations. Phys. Rev. Lett. 1991, 66, 1721–1724.

66

Chambliss, D. D.; Wilson, R. J.; Chiang, S. Ordered nucleation of Ni and Au islands on Au(111) studied by scanning tunneling microscopy. J. Vac. Sci. Technol. B 1991, 9, 933–937.

67

Asta, M.; Foiles, S. M. Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions. Phys. Rev. B 1996, 53, 2389–2404.

68

Van Vleck, J. H. Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys. Rev. 1932, 41, 208–215.

69

Figgis, B. N.; Hitchman, M. A. Ligand Field Theory and Its Applications; Wiley-VCH: New York, 2000.

70

Stewart, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213.

71

Rodriguez, J. A.; Campbell, R. A.; Goodman, D. W. Electron donor-electron acceptor interactions in surface metal-metal bonds: The Cu/Re(0001) and Pd/Re(0001) systems. J. Vac. Sci. Technol. A 1992, 10, 2540–2545.

72

Langmuir, I. Type of valence. Science 1921, 54, 59–67.

73

Pyykkö, P. Understanding the eighteen-electron rule. J. Organomet. Chem. 2006, 691, 4336–4340.

Nano Research
Pages 903-916
Cite this article:
Yu M, Xu W, Kalashnyk N, et al. From Zero to Two Dimensions: Supramolecular Nanostructures Formed from Perylene-3,4,9,10-tetracarboxylic Diimide (PTCDI) and Ni on the Au(111) Surface Through the Interplay Between Hydrogen-Bonding and Electrostatic Metal–Organic Interactions. Nano Research, 2012, 5(12): 903-916. https://doi.org/10.1007/s12274-012-0274-6

703

Views

32

Crossref

N/A

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 03 August 2012
Revised: 11 October 2012
Accepted: 25 October 2012
Published: 15 November 2012
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2012
Return