AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous Co3O4 as an electrocatalyst for water oxidation

Harun Tüysüz1,Yun Jeong Hwang1,Sher Bahadar Khan2Abdullah Mohamed Asiri2Peidong Yang1,2( )
Department of Chemistry University of CaliforniaBerkeley, California 94720 USA
The Center of Excellence for Advanced Materials Research (CEAMR) Chemistry Department King Abdulaziz UniversityJeddah 21589 Saudi Arabia

Present address: Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany

Present address: Clean Energy Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea

Show Author Information

Graphical Abstract

Abstract

Mesoporous Co3O4 has been prepared using porous silica as a hard template via a nanocasting route and its electrocatalytic properties were investigated as an oxygen evolution catalyst for the electrolysis of water. The ordered mesostructured Co3O4 shows dramatically increased catalytic activity compared to that of bulk Co3O4. Enhanced catalytic activity was achieved with high porosity and surface area, and the water oxidation overpotential (η) of the ordered mesoporous Co3O4 decreases significantly as the surface area increases. The mesoporous Co3O4 also shows excellent structural stability in alkaline media. After 100 min under 0.8 V (versus Ag/AgCl) applied bias, the sample maintains the ordered mesoporous structure with little deactivation of the catalytic properties.

Electronic Supplementary Material

Download File(s)
nr-6-1-47_ESM.pdf (314.8 KB)

References

1

Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 1990, 63, 988–992.

2

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

3

Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419.

4

Tüysüz, H.; Comotti, M.; Schüth, F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chem. Commun. 2008, 4022–4024.

5

Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.

6

Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.

7

MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4– clusters. Nature 1999, 397, 681–684.

8

Martin, T.; Galarneau, A.; Di Renzo, F.; Brunel, D.; Fajula, F.; Heinisch, S.; Cretier, G.; Rocca, J. L. Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC. Chem. Mater. 2004, 15, 1725–1731.

9

Mellaerts, R.; Aerts, C. A.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G.; Martens, J. A. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem. Commun. 2007, 1375–1377.

10

Yang, P. P.; Quan, Z. W.; Lu, L. L.; Huang, S. S.; Lin, J.; Fu, H. G. MCM-41 functionalized with YVO4: Eu3+: A novel drug delivery system. Nanotechnology 2007, 18, 235703.

11

Hyodo, T.; Nishida, N.; Shimizu, Y.; Egashira, M. Preparation and gas-sensing properties of thermally stable mesoporous SnO2. Sensors and Actuators B 2002, 83, 209–215.

12

Shenderovich, I. G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.; Sharif, S.; Albrecht, J.; Golubev, N. S.; Findenegg, G. H.; Limbach, H. H. Pyridine-15N – A mobile NMR sensor for surface acidity and surface defects of mesoporous silica. J. Phys. Chem. B 2003, 107, 11924–11939.

13

Fuertes, M. C.; López-Alcaraz, F. J.; Marchi, M. C.; Troiani, H. E.; Luca, V.; Míguez, H.; Soler-Illia, G. J. A. A. Photonic crystals from ordered mesoporous thin-film functional building blocks. Adv. Funct. Mater. 2007, 17, 1247–1254.

14

Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Amorós, P.; Guillem, C. pH- and photo-switched release of guest molecules from mesoporous silica supports. J. Am. Chem. Soc. 2009, 131, 6833–6843.

15

Ding, J.; Chan, K, Y.; Ren, J.; Xiao, F. S. Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions. Electrochem. Acta 2005, 50, 3131–3141.

16

Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

17

Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bönnermann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F. Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem. Int. Ed. 2004, 43, 4303–4306.

18

Tüysüz, H.; Salabas, E. L.; Weidenthaler, C.; Schüth, F. Synthesis and magnetic investigation of ordered mesoporous two-line ferrihydrite. J. Am. Chem. Soc. 2008, 130, 280–287.

19

Takahara, Y.; Kondo, J. N.; Takata, T.; Lu, D.; Domen, K. Mesoporous tantalum oxide. 1. Characterization and photocatalytic activity for the overall water decomposition. Chem. Mater. 2001, 13, 1194–1199.

20

Noda, Y.; Lee, B.; Domen, K.; Kondo, J. N. Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem. Mater 2008, 20, 5361–5367.

21

Hisatomi, T.; Otani, M.; Nakajima, K.; Teramura, K.; Kako, Y.; Lu, D.; Takata, T.; Kondo, J. N.; Domen, K. Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem. Mater. 2010, 22, 3854–3861.

22

Chen, X.; Yu, T.; Fan, X.; Zhang, H.; Li, Z.; Ye, J.; Zou, Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci. 2007, 253, 8500–8506.

23

Li, G.; Zhang, D.; Yu. J. C. Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst. Chem. Mater. 2008, 20, 3983–3992.

24

Zhang, Z.; Zuo, F.; Feng, P. Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J. Mater. Chem. 2010, 20, 2206–2212.

25

Kim, J. Y.; Kang, S. H.; Kim, H. S.; Sung, Y. E. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir 2010, 26, 2864–2870.

26

Chen, X.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.

27

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

28

Ryu, S. Y.; Balcerski, W.; Lee, T. K.; Hoffmann, M. R. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silica. J. Phys. Chem. C 2007, 111, 18195–18203.

29

Macias-Sanchez, S. A.; Nava, R.; Hernandez-Morales, V.; Acosta-Silva, Y. J.; Gomez-Herrera, L.; Pawelec, B.; Al-Zahrani, S. M.; Navarro, R. M.; Fierro, J. L. G. Cd1–xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): Structural features and photocatalytic activity under visible light. Int. J. Hydrog. Energy 2012, 37, 9948–9958.

30

Jiao, F.; Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 2010, 46, 2920–2922.

31

Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841–1844.

32

Cuk, T.; Weare, W. W.; Frei, H. Unusually long lifetime of excited charge-transfer state of all-inorganic binuclear TiOMn unit anchored on silica nanopore surface. J. Phys. Chem. C 2010, 114, 9167–9172.

33

Okamoto, A.; Nakamura, R.; Osawa, H.; Hashimoto, K. Site-specific synthesis of oxo-bridged mixed-valence binuclear complexes on mesoporous silica. Langmuir 2008, 24, 7011–7017.

34

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

35

Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J. N.; Domen, K.; Hosono, H.; Kawazoe, H.; Tanaka, A. Mechano-catalytic overall water splitting. Chem. Commun. 1998, 2185–2186.

36

Takata, T.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Recent progress of photocatalysts for overall water splitting. Catal. Today 1998, 44, 17–26.

37

Kim, H. G.; Hwang, D. W.; Kim, J.; Kim, Y. G.; Lee, J. S. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 1999, 1077–1078.

38

Kudo, A.; Kato, H.; Nakagawa, S. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. J. Phys. Chem. B 2000, 104, 571–575.

39

Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089.

40

Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

41

Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287.

42

Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

43

Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195.

44

Cesar, I.; Kay, A.; Martinez, J. A. G.; Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128, 4582–4583.

45

Sivula, K.; Le Formal, F.; Gräetzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.

46

Tilley, S. D.; Cornuz, M.; Sivula, K.; Gräetzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 2010, 49, 6405–6408.

47

Walter, M.; Warren, E. L.; Boettcher, S. W.; Mi, Q.; Mckone, J. R.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

48

Surendranath, Y.; Dincă, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.

49

Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A. Metal oxides as heterogenous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795–2806.

50

Khan, S. U. M.; Akikusa, J. Stability and photoresponse of nanocrystelline n-TiO2 and n-TiO2/Mn2O3 thin film electrodes during water splitting reactions. J. Electrochem. Soc. 1998, 145, 89–93.

51

Esswein, A.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 2009, 113, 15068–15072.

52

Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136–2137.

53

Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J. Am. Chem. Soc. 2008, 130, 11510–11517.

54

Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.

Nano Research
Pages 47-54
Cite this article:
Tüysüz H, Hwang YJ, Khan SB, et al. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Research, 2013, 6(1): 47-54. https://doi.org/10.1007/s12274-012-0280-8
Part of a topical collection:

811

Views

265

Crossref

N/A

Web of Science

263

Scopus

14

CSCD

Altmetrics

Received: 03 October 2012
Revised: 13 November 2012
Accepted: 24 November 2012
Published: 13 December 2012
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012
Return