AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improved photoconductive properties of composite nanofibers based on aligned conjugated polymer and single-walled carbon nanotubes

Florian Massuyeau1( )Yuanchun Zhao1Abdel Aziz El Mel1Abu Yaya1Frédéric Geschier1Eric Gautron1Serge Lefrant1Jean Yves Mevellec1Chris Ewels1Chain-Shu Hsu2Eric Faulques1Jany Wéry1Jean Luc Duvail1( )
Institut des Matériaux Jean RouxelUMR6502 CNRS, Université de Nantes, 2 rue de la HoussinièreF-44322, NantesFrance
Department of Applied ChemistryChiao Tung University1001 Ta Hsueh RoadHsin-Chu30010Taiwan, China
Show Author Information

Graphical Abstract

Abstract

We successfully address the challenge of aligning single-walled carbon nanotubes (SWNTs) and conjugated polymer chains in composite nanofibers for enhancing their opto-electrical properties. A pore-filling template strategy has been developed to prepare such nanocomposites from SWNTs and poly(para-phenylene vinylene) (PPV) chains, with both species well-oriented aligned along the pore axis. Addition of the SWNTs leads to a remarkable increase in photocurrent of four orders of magnitude as compared to equivalent pristine PPV nanofibers. Further analysis indicates that the strong photocurrent enhancement is not simply an effect of alignment, but additionally benefits from alignment-enhanced interaction of polymer chains with SWNTs, as supported by density functional theory (DFT) calculations.

Electronic Supplementary Material

Download File(s)
nr-6-2-149_ESM.pdf (4.2 MB)

References

1

Nalwa, H. S. Handbook of Organic Electronics and Photonics; American Scientific Publishers: Valencia, 2008.

2

Harris, P. J. F. Carbon nanotube composites. Int. Mater. Rev. 2004, 49, 31-43.

3

Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B 2000, 104, 10012-10016.

4

Steuerman, D. W.; Star, A.; Narizzano, R.; Choi, H.; Ries, R. S.; Nicolini, C.; Stoddart, J. F.; Heath, J. R. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B 2002, 106, 3124-3130.

5

Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.; Szostak, K.; Beguin, F.; Blau, W. J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 2004, 4, 353-356.

6

Woo, H. S.; Czerw, R.; Webster, S.; Carroll, D. L.; Ballato, J.; Strevens, A. E.; O'Brien, D.; Blau, W. J. Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett. 2000, 77, 1393-1395.

7

Hoppe, H.; Sariciftci, N. S. Polymer solar cells. Adv. Polym. Sci. 2008, 214, 1-86.

8

Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298-303.

9

Yang, X.; Loos, J. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules 2007, 40, 1353-1362.

10

Xin, H.; Reid, O. G.; Ren, G. Q.; Kim, F. S.; Ginger, D. S.; Jenekhe, S. A. Polymer nanowire/fullerene bulk heterojunction solar cells: How nanostructure determines photovoltaic properties. ACS Nano 2010, 4, 1861-1872.

11

Thostenson, E. T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77-L80.

12

Safadi, B.; Andrews, R.; Grulke, E. A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84, 2660-2669.

13

Zhang, Y. G.; Chang, A. L.; Cao, J.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3155-3157.

14

Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 2002, 14, 1380-1383.

15

Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H. H.; Yang, G. L.; Li, C.; Willis, P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 2003, 15, 1161-1165.

16

Wang, J.; Dai, J.; Yarlagadda, T. Carbon nanotube-conducting-polymer composite nanowires. Langmuir 2005, 21, 9-12.

17

Ribbe, A. E.; Bodycomb, J.; Hashimoto, T. Quantitative analysis of the staining of a polyisoprene-block-polystyrene. Macromolecules 1999, 32, 3154-3156.

18

Rayson, M. J.; Briddon, P. R. Highly efficient method for Kohn-Sham density functional calculations of 500-10000 atom systems. Phys. Rev. B 2009, 80, 205104.

19

Briddon, P. R.; Jones, R. LDA calculations using a basis of Gaussian orbitals. Phys. Stat. Solidi B 2000, 217, 131-171.

20

Massuyeau, F.; Duvail, J. L.; Athalin, H.; Lorcy, J. M.; Lefrant, S.; Wéry, J.; Faulques, E. Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties. Nanotechnology 2009, 20, 155701.

21

Massuyeau, F.; Faulques, E.; Athalin, H.; Lefrant, S.; Duvail, J. L.; Wéry, J.; Mulazzi, E.; Perego, R. Steady state and transient photoluminescence in poly-p-phenylene vinylene films and nanofibers. J. Chem. Phys. 2009, 130, 124706.

22

Stengersmith, J. D.; Lenz, R. W.; Wegner, G. Spectroscopic and cyclic voltammetric studies of poly(para-phenylene vinylene) prepared from 2 different sulfonium salt precursor polymers. Polymer 1989, 30, 1048-1053.

23

Wéry, J.; Aarab, H.; Lefrant, S.; Faulques, E.; Mulazzi, E.; Perego, R. Photoexcitations in composites of poly(paraphenylene vinylene) and single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 115202.

24

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361-2366.

25

Duesberg, G. S.; Loa, I.; Burghard, M.; Syassen, K.; Roth, S. Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5436-5439.

26

Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820-1823.

27

Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987-994.

28

Lefebvre, J.; Fraser, J. M.; Finnie, P.; Homma, Y. Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 2004, 69, 075403.

29

Liem, H. M.; Etchegoin, P.; Whitehead, K. S.; Bradley, D. D. C. Raman anisotropy measurements: An effective probe of molecular orientation in conjugated polymer thin films. Adv. Funct. Mater. 2003, 13, 66-72.

30

Orion, I.; Buisson, J. P.; Lefrant, S. Spectroscopic studies of polaronic and bipolaronic species in n-doped poly(paraphenylenevinylene). Phys. Rev. B 1998, 57, 7050-7065.

31

Mulazzi, E.; Perego, R.; Aarab, H.; Mihut, L.; Lefrant, S.; Faulques, E.; Wéry, J. Photoconductivity and optical properties in composites of poly(paraphenylene vinylene) and single-walled carbon nanotubes. Phys. Rev. B 2004, 70, 155206.

32

Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U. Polymer nanotubes by wetting of ordered porous templates. Science 2002, 296, 1997.

33

Hulteen, J. C.; Martin, C. R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075-1087.

34

Panhuis, M. I. H.; Maiti, A.; Dalton, A. B.; van der Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. Selective interaction in a polymer-single-wall carbon nanotube composite. J. Phys. Chem. B 2003, 107, 478-482.

35

Chen, J.; Liu, H. Y.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 2002, 124, 9034-9035.

36

Kang, Y. K.; Lee, O. S.; Deria, P.; Kim, S. H.; Park, T. H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Helical wrapping of single-walled carbon nanotubes by water soluble poly(p-phenyleneethynylene). Nano Lett. 2009, 9, 1414-1418.

37

Gao, J.; Loi, M. A.; de Carvalho, E. J. F.; dos Santos, M. C. Selective wrapping and supramolecular structures of polyfluorene-carbon nanotube hybrids. ACS Nano 2011, 5, 3993-3999.

38

Kymakis, E.; Amaratunga, G. A. J. Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol. Energ. Mat. Sol. C. 2003, 80, 465-472.

39

Kymakis, E.; Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 2002, 80, 112-114.

40

Ltaief, A.; Bouazizi, A.; Davenas, J. Charge transport in carbon nanotubes-polymer composite photovoltaic cells. Materials 2009, 2, 710-718.

41

Heun, S.; Mahrt, R. F.; Greiner, A.; Lemmer, U.; Bassler, H.; Halliday, D. A.; Bradley, D. D. C.; Burn, P. L.; Holmes, A. B. Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence. J. Phys. -Condens. Mat. 1993, 5, 247-260.

42

Holt, J. M.; Ferguson, A. J.; Kopidakis, N.; Larsen, B. A.; Bult, J.; Rumbles, G.; Blackburn, J. L. Prolonging charge separation in P3HT-SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 2010, 10, 4627-4633.

Nano Research
Pages 149-158
Cite this article:
Massuyeau F, Zhao Y, Aziz El Mel A, et al. Improved photoconductive properties of composite nanofibers based on aligned conjugated polymer and single-walled carbon nanotubes. Nano Research, 2013, 6(2): 149-158. https://doi.org/10.1007/s12274-013-0290-1

667

Views

14

Crossref

N/A

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 03 October 2012
Revised: 13 December 2012
Accepted: 28 December 2012
Published: 29 January 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return