AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays

Yandong Wang1Nan Lu1( )Wentao Wang1Lingxiao Liu1Lei Feng1Zhoufang Zeng1Haibo Li1Weiqing Xu1Zijian Wu2Wei Hu2Yanqing Lu2Lifeng Chi1,3
State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchun130012China
National Laboratory of Solid State MicrostructuresNanjing UniversityNanjing210093China
Physikalisches Institut and Center for Nanotechnology (CeNTech)Westfälische Wilhelms-UniversitätMünsterD-48149Münster, Germany
Show Author Information

Graphical Abstract

Abstract

Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 107. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.

Electronic Supplementary Material

Download File(s)
nr-6-3-159_ESM.pdf (324.3 KB)

References

1

Schierhorn, M.; Lee, S. J.; Boettcher, S. W.; Stucky, G. D.; Moskovits, M. Metal-silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv. Mater. 2006, 18, 2829-2832.

2

Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006-5013.

3

Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338A-346A.

4

Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS. J. Phys. Chem. C 2007, 111, 17985-17988.

5

Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogaprich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234-2237.

6

Lu, G.; Li, H.; Wu, S.; Chen, P.; Zhang, H. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860-863.

7

Mu, C.; Zhang, J. P.; Xu, D. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 2010, 21, 015604.

8

Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Goesele, U.; Christiansen, S.; Kim, D. H.; Steinhart, M. Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions. Nano Lett. 2009, 9, 2384-2389.

9

Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R. Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosens. Bioelectron. 2009, 24, 1531-1535.

10

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395.

11

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.

12

Sajanlal, P. R.; Pradeep, T. Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res. 2009, 2, 306-320.

13

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.

14

Kerker, M.; Wang, D. S.; Chew, H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: Errata. Appl. Opt. 1980, 19, 4159-4174.

15

Panigrahi, S.; Praharaj, S.; Basu, S.; Ghosh, S. K.; Jana, S.; Pande, S.; Vo-Dinh, T.; Jiang, H.; Pal, T. Self-assembly of silver nanoparticles: Synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. J. Phys. Chem. B 2006, 110, 13436-13444.

16

Braun, G.; Lee, S. J.; Dante, M.; Nguyen, T. Q.; Moskovits, M.; Reich, N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 2007, 129, 6378-6379.

17

Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229-1233.

18

Stiles, P.; Dieringer, J.; Shah, N. C.; Van Duyne, R. P Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601-626.

19

Wu, W.; Hu, M.; Ou, F. S.; Li, Z.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.

20

Yang, Y.; Li, Z. Y.; Yamaguchi, K.; Tanemura, M.; Huang, Z.; Jiang, D.; Chen, Y.; Zhou, F.; Nogami, M. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 2012, 4, 2663-2669.

21

Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729-1745.

22

Schierhorn, M.; Lee, S. J.; Boettcher, S. W.; Stucky, G. D.; Moskovits, M. Metal-silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv. Mater. 2006, 18, 2829-2832.

23

Li, X.; Hu, H.; Li, D.; Shen, Z.; Xiong, Q.; Li, S.; Fan, H. J. Ordered array of gold semishells on TiO2 spheres: An ultrasensitive and recyclable SERS substrate. ACS Appl. Mater. Interf. 2012, 4, 2180-2185.

24

Krishnamoorthy, S.; Krishnan, S.; Thoniyot, P.; Low, H. Y. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography. ACS Appl. Mater. Interf. 2011, 3, 1033-1040.

25

Qian, L.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117-1128.

26

Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972-1975.

27

Wang, Y. D.; Lu, N.; Xu, H. B.; Shi, G.; Xu, M. J.; Lin, X. W.; Li, H. B.; Wang, W. T.; Qi, D. P.; Lu, Y. Q.; Chi, L. F. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Res. 2010, 3, 520-527.

28

Zeng, Z. F.; Wang, Y. D.; Shi, S. L.; Wang, L. F.; Guo, X. H.; Lu, N. On-plate selective enrichment and self-desalting of peptides/proteins for direct MALDI MS analysis. Anal. Chem. 2012, 84, 2118-2123.

29

Wang, W. T.; Lu, N.; Hao, J. Y.; Xu, H. B.; Qi, D. P.; Chi, L. F. Self-assembled monolayer islands masked chemical etching for broadband antireflective silicon surfaces. J. Phys. Chem. C 2010, 114, 1989-1995.

30

Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgartel, H. Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 1990, 137, 3612-3626.

31

Jung, H. Y.; Park, Y. K.; Park, S.; Kim, S. K. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Anal. Chim. Acta 2007, 602, 236-243.

32

Mahmoud, M. A.; El-Sayed, M. A. Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett. 2009, 9, 3025-3031.

33

Biggs, K. B.; Camden, J. P.; Anker, J. N.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: Determination of the sticking probability and detection limit time. J. Phys. Chem. A 2009, 113, 4581-4586.

34

McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279-11285.

35

Linn, N. C.; Sun, C. H.; Arya, A.; Jiang, P.; Jiang, B. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness. Nanotechnology 2009, 20, 225303.

36

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379.

37

Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388-392.

38

Ji, N.; Ruan, W.; Wang, C.; Lu, Z.; Zhao, B. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Langmuir 2009, 25, 11869-11873.

39

Gui, J.; Stern, D.; Frank, D.; Lu, F.; Zapien, D.; Hubbard, A. Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at Ag(111) and Pt(111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, and electrochemistry. Langmuir 1991, 7, 955-963.

Nano Research
Pages 159-166
Cite this article:
Wang Y, Lu N, Wang W, et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Research, 2013, 6(3): 159-166. https://doi.org/10.1007/s12274-013-0291-0

694

Views

75

Crossref

N/A

Web of Science

76

Scopus

7

CSCD

Altmetrics

Received: 14 November 2012
Revised: 29 December 2012
Accepted: 02 January 2013
Published: 18 January 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return