Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a facile, two-step hydrothermal synthesis of a novel Co3O4/α-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary Co3O4 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary α-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
Fan, Y.; Huang, K.; Zhang, Q.; Xiao, Q. Z.; Wang, X. X.; Chen, X. D. Novel silicon-nickel cone arrays for high performance LIB anodes. J. Mater. Chem. 2012, 22, 20870-20873.
Xu, J. J.; Wu, H. Y.; Wang, F.; Xia, Y. Y.; Zheng, G. F. Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201200564.
Lahann, J. Environmental nanotechnology: Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320-321.
Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen. W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746-749.
Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.
Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multi-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738-2741.
Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.; Wang, D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 2011, 7, 578-582.
Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503-3509.
Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.
Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680-1686.
Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531-5538.
Wu, H.; Xu, M.; Wu, H. Y.; Xu, J. J.; Wang, Y. L.; Peng, Z.; Zheng, G. F. Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 19821-19825.
Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.
Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425-1432.
Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1, 2-propanediamine. Nanotechnology 2009, 20, 245603.
Ye, D. X.; Luo, L. Q.; Ding, Y. P.; Liu, B. D.; Liu, X. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst 2012, 137, 2840-2845.
Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9, 2544-2550.
Nam, K. T. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885-888.
Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837-1842.
Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.
Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258-262.
Zhang, C. M.; Chen, J.; Zeng, Y.; Rui, X. H.; Zhu, J. X.; Zhang, W. Y.; Xu, C.; Lim, T. M.; Hng, H. H.; Yan, Q. Y. A facile approach toward transition metal oxide hierarchical structures and their lithium storage properties. Nanoscale 2012, 4, 3718-3724.
Jiang, J.; Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ding, R. M.; Ji, X. X.; Hu, Y. Y.; Chi, Q. B.; Zhu, Z. H. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates. Cryst. Growth Des. 2010, 10, 70-75.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505-4509.
Zhou, W.; Cheng, C.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439-2445.
Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333-3338.
Wang, Y. L.; Xu, J. J.; Wu, H.; Xu, M.; Peng, Z.; Zheng, G. F. Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 21923-21927.
Chou, S. L.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H. K.; Dou, S.X. High-surface-area α-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092-2098.
Chen, J.; Xia, X. H.; Tu, J. P.; Xiong, Q. Q.; Yu, Y. X.; Wang, X. L.; Gu, C. D. Co3O4-C core-shell nanowire array as an advanced anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 15056-15061.
Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187-3194.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Searching for new anode materials for the Li-ion technology: Time to deviate from the usual path. J. Power Sources 2001, 97, 235-239.