AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes

Jiepeng Rong1<Xin Fang1<Mingyuan Ge1Haitian Chen2Jing Xu1Chongwu Zhou2( )
Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos Angeles, California90089USA
Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles, California90089USA

§ These authors contributed equally to this paper.

Show Author Information

Graphical Abstract

Abstract

Silicon (Si) has the highest known theoretical specific capacity (3, 590 mAh/g for Li15Si4, and 4, 200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO-Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1, 500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.

Electronic Supplementary Material

Download File(s)
nr-6-3-182_ESM.pdf (341.7 KB)

References

1

Scrosati, B. Battery technology-challenge of portable power. Nature 1995, 373, 557-558.

2

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

3

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

4

Rolison, D. R.; Nazar, L. F. Electrochemical energy storage to power the 21st century. MRS Bull. 2011, 36, 486-493.

5

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

6

Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676-697.

7

Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal hydrides for lithium-ion batteries. Nat. Mater. 2008, 7, 916-921.

8

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

9

Sun, Y. K.; Myung, S. T.; Park, B. C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320-324.

10

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electro-chemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515-1520.

11

Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

12

Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.

13

Malik, R.; Zhou, F.; Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 2011, 10, 587-590.

14

Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725-729.

15

Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

16

Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowire for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491-495.

17

Chen, H. T.; Xu, J.; Chen, P. C.; Fang, X.; Qiu, J.; Fu, Y.; Zhou, C. W. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. ACS Nano 2011, 5, 8383-8390.

18

Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrodes for lithium ion batteries. Nano Lett. 2009, 9, 3370-3374.

19

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anode using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353-358.

20

Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683-4690.

21

Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860-863.

22

Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 2008, 47, 10151-10154.

23

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.

24

Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. II. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710-1716.

25

Park, J.; Lu, W.; Sastry, A. M. Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 2011, 158, A201-A206.

26

Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture. Adv. Mater. 2012, 24, 533-537.

27

Yao, Y.; Huo, K. F.; Hu, L. B.; Liu, N.; Cha, J. J.; McDowell, M. T.; Chu, P. K.; Cui, Y. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries. ACS Nano 2011, 5, 8346-8351.

28

Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415-4420.

29

Yoriya, S.; Grimes, C. A. Self-assembled TiO2 nanotube arrays by anodizationi of titanium in diethylene glycol: Approach to extended pore widening. Langmuir 2010, 26, 417-420.

30

Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 2001, 4, A137-A140.

31

Park, M. S.; Wang, G. X.; Liu, H. K.; Dou, S. X. Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries. Electrochim. Acta 2006, 51, 5246-5249.

32

Moon, T.; Kim, C.; Park, B. Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. J. Power Sources 2006, 155, 391-394.

33

Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472-A477.

34

Kim, Y. L.; Sun, Y. K.; Lee, S. M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochim. Acta 2008, 53, 4500-4504.

35

Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588-598.

36

Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156-A161.

37

Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 2010, 4, 5366-5372.

Nano Research
Pages 182-190
Cite this article:
Rong J, Fang X, Ge M, et al. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Research, 2013, 6(3): 182-190. https://doi.org/10.1007/s12274-013-0294-x

489

Views

25

Crossref

N/A

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 20 June 2012
Revised: 09 January 2013
Accepted: 10 January 2013
Published: 29 January 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return